Wednesday, 17 October 2018

Annealing vs toughening


The statement “annealing stained glass makes it stronger” appeared on the internet some time ago.  Of course, without annealing there is no glass, it would simply crumble.  Annealing is the process of allowing the glaseous state to be achieved.

I think the statement is more about the difference between annealed and toughened/tempered glass.  In summary, it relates to the amount of stress within the glass.  Well annealed glass has less stress than inadequately annealed glass and so is more stable.  Toughening is a process that balances stress and tension in the glass.

The processes are for different purposes and follow different processes. 

Annealing
Annealing of glass is a process of slowly cooling hot glass to relieve residual internal stresses introduced during manufacture. Annealing of glass is critical to its durability. Glass that has not been properly annealed retains thermal stresses caused by rapid cooling, which decreases the strength and reliability of the product. Inadequately annealed glass is likely to crack or shatter when subjected to relatively small temperature changes or to minor mechanical shock. It even may fail spontaneously from its internal stresses.
To anneal glass, it is necessary to soak it at its annealing temperature. This is determined mathematically as a viscosity of 1013 Poise (Poise is a measure of viscosity). For most soda lime glass, this annealing temperature is in the range of 450–540°C, and is the so-called annealing point or temperature equalisation point of the glass. At such a viscosity, the glass is too stiff for significant change of shape without breaking, but it is soft enough to relax internal strains by microscopic flow. The piece then heat-soaks until its temperature is even throughout and the stress relaxation is adequate. The time necessary for annealing depends on its maximum thickness. The glass then is cooled at a predetermined rate until its temperature passes the strain point (viscosity = 1014.5 Poise), below which even microscopic internal flow effectively stops and annealing stops with it. It then is safe to cool the product to room temperature at a rate limited by the thickness of the glass.
At the annealing point (viscosity = 1013 Poise), stresses relax within minutes, while at the strain point (viscosity = 1014.5 Poise) stresses relax within hours.  Stresses acquired at temperatures above the strain point, and not relaxed by annealing, remain in the glass indefinitely and may cause either immediate or delayed failure. Stresses resulting from cooling too rapidly below the strain point are considered temporary, although they may be adequate to promote immediate failure.

But annealed glass, with almost no internal stress, is subject to microscopic surface cracks, and any tension gets magnified at the surface, reducing the applied tension needed to propagate the crack. Once it starts propagating, tension gets magnified even more easily, causing it at breaking point, to propagate at the speed of sound in the material.

In short, the aim of annealing is to relieve the stress to create a stable piece of glass. The above describes when and how that occurs.

Toughened/Tempered Glass

Toughening or tempering glass starts with annealed glass to form one type of safety glass.  This done through a process of controlled thermal or chemical treatments to increase its strength compared with normal glass. Tempering puts the outer surfaces into compression and the interior into tension. Such stresses cause the glass, when broken, to crumble into small granular chunks instead of splintering into jagged shards as annealed glass does. The granular chunks are less likely to cause injury – thus safety glass.

Toughened glass is stronger than normal glass.  The greater contraction of the inner layer during manufacturing induces compressive stresses in the surface of the glass balanced by tensile stresses internally. For glass to be considered toughened, the compressive stress on the surface of the glass should be a minimum of 69 megapascals (10,000 psi). For it to be considered safety glass, the surface compressive stress should exceed 100 megapascals (15,000 psi).
It is the compressive stress that gives the toughened glass increased strength. Any cutting or grinding must be done prior to tempering. Cutting, grinding, and sharp impacts after tempering will cause the glass to fracture.
Toughened glass is normally made from annealed sheet glass via a thermal tempering process. The glass is placed onto a roller table, taking it through a furnace that heats it well above its transition temperature of ca. 540°C (depending on the glass concerned) to around 620°C. The glass is then rapidly cooled with forced air drafts while the inner portion remains free to flow for a short time.
An alternative chemical toughening process involves forcing a surface layer of glass at least 0.1 mm thick into compression by ion exchange of the sodium ions in the glass surface with potassium ions (which are 30% larger), by immersion of the glass into a bath of molten potassium nitrate. Chemical toughening results in increased toughness compared with thermal toughening and can be applied to glass objects of complex shapes. 

This blog entry is largely based on Wikipedia
https://en.wikipedia.org/wiki/Toughened_glass
and other sources.



Wednesday, 10 October 2018

Slumping Different Glasses in the Same Firing

The question has arisen as to whether it is possible to slump Bullseye and Spectrum in same slump firing.

Yes, it is possible.

But precautions are necessary.

Different temperatures are generally recommended for Spectrum and Bullseye.  Spectrum is generally expected to do the same slump as Bullseye at 25C less.

This implies that Bullseye should be put in larger or easier slump moulds than Spectrum and fired to the lower temperature required by Spectrum. The thinking behind this is that smaller spans require longer or more heat to slump.  Steeper moulds require more time and heat than less steep ones.

In general, shallow slumps will work better for both glasses together than more steep or textured ones.

To be certain of a good result, you should fire as low as practical for an extended soak.  Follow this with an extended annealing and a slower cooling rate than normal for Spectrum.

This applies to almost all the glass that is being produced with the aim of being compatible with these two glasses.  It is not possible to get a good result for float glass if it is put into the same firing as for Bullseye or Spectrum.


Wednesday, 3 October 2018

Tack Fuse vs Fire polish

Are tack fuse and fire polish the same thing?

Maybe

They both occur in the same temperature same range, depending on the degree of tack fuse you want.

What you are doing in the fire polish process is heating the top surface enough to appear polished. Very little time is needed in a fire polish at top temperature as opposed to a tack fuse.

In a tack fuse, you want the bottom of the upper pieces to be hot enough to stick to the bottom layer. This requires a higher temperature or longer soak than a fire polish.

At around 730C, depending on your kiln, you will be softening the upper surface of the glass enough to give a polished appearance.  To determine whether the polished surface has been achieved, you can peek into your kiln at the chosen temperature to see if the polish is complete.

This is also the temperature at which sintering, or a lamination of the glass pieces occurs.  The edges will still be sharp, but cannot be pulled apart.  This kind of fusing needs careful annealing – long soaks and slow cools.


Tack fusing of various degrees occurs in the temperature range from 730C to 770C.  To determine which temperature and soak time will give you the result you desire will require experimentation and observation.  Generally, you can achieve the desired level of fuse with lower temperatures and longer soaks, as you can at higher temperatures and longer soaks. 

It is also possible to give a fire polish to your glass at a really low temperature, such as 550C, with a very long soak. This will avoid significantly flatening the surface of your piece.  This is the effect of heat work.

Further information is available in the ebook Low Temperature Kiln Forming.

Wednesday, 26 September 2018

The relative order of kiln forming events

When preparing for multiple firings of elements onto a prepared piece, you need to consider the order and temperatures of events so that you do not harm an earlier stage of the project.  This blog entry will not give definitive temperatures, as that varies by glass and by kiln.  Instead, it indicates what happens in progression from highest to lowest temperatures in approximate Celsius degrees.  

ca. 1300C  -  Approximate liquid temperature 

ca. 850 – 1000C  -  Glass blowing working temperature

ca. 950C  -  Raking and combing

ca. 850C  -  Casting

ca. 810C  -  Full fuse

ca. 790C  -  Large bubble formation

ca. 770C  -  High tack, low contour fuse

ca. 760C  -  Tack fuse

ca. 750C  -  Fire polish

ca. 700C – 760C  -  Devitrification range

ca. 700C  -  Lamination tack

ca. 600C – 680C  -  Slump and drape

ca. 650C  -  Vitreous paint curing temperature

ca. 600C  -  No risk of thermal shock above this temperature 

ca. 540 – 580C  -  Glass stainers enamel curing temperature

ca. 520 – 550C  -  Silver stain firing temperature

ca. 550C  -  Glass surface beginning to soften

Slow rates of advance needed from room temperature to ca. 500C


These temperatures are of course, affected by the soak times. The longer the soak time, the lower temperature required. The rate at which you achieve the temperature also affects the effective temperature.  Slower rates of advance require lower temperatures, than fast rises in temperature.  These illustrate the effect of heat work.

The table shows for example you need to do all the flat operations and firings before slumping or draping.  It also shows you can use vitreous glass paints at the same time as slumping and draping.  This emphasises that the standard practice is to plan the kind of firings you will need for the piece and do them in the order of highest temperature first, lowest last.


In general, you do need to do the highest temperature operation first and lowest last.  But there are some things you can do with heat work.  For example, if you needed to sandblast a tack fused piece, but did not want to risk reducing the differences in height there things you can do.  From the list above, you can see the glass surface begins to soften around 500C.  It is possible to soak the glass for a long time around 500C to give it a fire polish, instead of going to a much higher temperature.  You will need to experiment to find the right combination of temperature and soak length, but it can be done.


This article is to show that knowledge of what is happening to the glass at different temperatures, can help in “fooling” the glass into giving you the results you want without always following the “rules”.  This may also be what it is to be a maverick glass worker.  Use the behaviour of glass to your advantage.

Wednesday, 19 September 2018

Repairs to a Vermiculite Mould


Occasionally, during the demoulding of a form, the mould will break.  Not all is lost.  It can be repaired. 



In this example, the mould is not yet fully cured and is damp.  But this can be applied to fully cured and dried moulds too. Notes will be included where the practice varies for the dried mould.

The first stage is to make up a paste of the ciment fondue for the edge to edge repair.  This should be the consistency of pancake batter or slightly wetter.  The mixed cement is shown at the top of the picture in a small plastic tub.





Wet the edges of the mould pieces thoroughly.  This is to prevent the mould from sucking too much water from the cement, which would give a weak adhesion.  On dried moulds, you may have to do this several times to thoroughly wet the mould and the broken piece.






Then begin applying the wet cement thinly to all the edges.  Do not put it on thickly, as you want the pieces to fit back together smoothly. 





Place the pieces together with gentle pressure. 




Then begin to smooth the wet ciment fondue into the cracks between the broken pieces and the main body.  Be careful to smooth the ciment fondu immediately, as it is very difficult to change once cured.





Continue to work the ciment fondue into any cracks that appear as the mould is wetted.





Make sure the cement is smoothed into the cracks so there are no proud areas above or around the cracks.





This photo shows the smoothed ciment fondu on the interior.

Continue smoothing the cement into the cracks at the edges.





Fill the cracks from the outside also









When the application of the cement is completed, make up a mixture of 1:4 ciment fondue to vermiculite. 

The purpose of this is to strengthen the mould in the weak area.  It is not wise to rely entirely on the strength of the edge bonding of the ciment fondue.





You will need to estimate the total volume required, but it is better to mix too much rather than too little.  Make this mix a little wetter than for the original mould.  Water should not be standing in the mix, but you will be able to squeeze water from the ball of mix easily. 




This is especially important for moulds which have already been cured.  You should also put water on the surface that you are going to back up.

It is important to put a water proof material on the workbench to avoid the mould sticking to the bench, or water dripping over other things.

Having wetted the mould exterior again, begin applying the mix to the outside of the mould.





Continue building up the mixture in thin layers.  This allows the best adhesion of the material to the mould and to each layer.  It is easier to compact a small amount of material than a large amount all at one time.







In this photo, you see some of the water being forced out of the mixture by the compaction of the mix onto the mould.

Continue building around the broken area until you have applied sufficient material to the mould to strengthen it.



When you have finished, one area of the mould may be a little larger than the rest.  This is not a problem in its use, as it does not thermal shock, and it does not keep one part of the glass hotter than the glass touching the rest of the mould.




You can now loosely wrap the water proof material around the mould.  Do not seal it completely.  Place the mould in a plastic bag to cure for a day or more, just as for the original mould.

You can then unwrap the mould and fire it to cure it just as the original. The method for curing vermiculite moulds is given here.

Wednesday, 12 September 2018

Tapping Glass Scores


Many people tap the underside of the glass after scoring.  The purpose of this is to run the score.

However, this tapping is often unnecessary.  Running the score can be done in a variety of ways, some more suitable for one kind of score line than another.

Straight score lines can be run in several ways.

  • ·        Move the line to the edge of the bench or cutting surface and use a controlled downward force on the glass off the edge while holding the remainder firm.  Works best if at least a third is being broken off.
  • ·        You can place a small object, such as the end of your cutter or a match stick, directly under the score and place your hands on either side and press firmly, but not sharply, down on each side at the same time.  This is good for breaking pieces off from half to a quarter of the full sheet.
  • ·        Make your hands into fists with the thumbs on top of the glass and the fingers below.  Turn your wrists outwards to run the score. Works best if the glass is approximately half to be kept and half to be broken off.
  • ·        Take the glass off the cutting surface, hold in front of your knee at about 45 degrees and raise you knee quickly to the glass.  This will break the glass cleanly, but is only useful for moderate sized sheets and where you are breaking off about half of the sheet.
  • ·        Use cut running pliers to run the score.  Be sure the jaws are adjusted for the thickness of the glass, and do not apply excessive pressure.  If the score does not run all the way, turn the glass around and run the score from the opposite end. Best where there are approximately equal thin parts to be broken away from each other and when the score line is no less than an oblique angle to the edge. It does not work very well for thin pieces or acute angles.
  • ·        Use two grozing pliers nose to nose and flat side up at the score line and bend them down and away.  This works best on thin and or pointed pieces.
  • ·        Breaking pliers can be used at intervals along the score. This is most useful on long thin pieces.


Curved score lines, of course require a bit more care but generally employ the same methods.

  • ·        Gentle curves can be dealt with as though they are straight lines, although the breaking at the edge of the cutting surface is a bit risky. This means the two-fist, running pliers, two grozing pliers and breaking plier methods can be used.
  • ·        Lines with multiple curves usually require cut running pliers to start the run at each end of the score.
  • ·        Deep curved scores may require the running pliers whose angle can be adjusted to be at right angles to the score.  The ones I know are Silberschnitt, made by Bohle, although the ring pliers by Glastar work in the same way. This usually requires that the edge of the glass is not more than 5 cm from the score.  This blog gives information on a variety of cut running pliers


Tapping

After trying all these methods to run the score, sometimes the score is so complicated or deep into the glass that you cannot simply run the score.  Tapping may then be required, but it is a last resort.

Tapping, to be effective, must be accurately directed to places directly under the score line.  The tapping cannot be at random places under the glass. Each tap must be controlled – to be direct and to be firm. 

The impact needs to be directly under the score. 
  • ·        Taps that are either side of the line will either not be effective, or will promote breakage other than along the score line. 
  • ·        Tapping to either side of the score also promotes shells to either side of the score line.  These are not only dangerous when handling, but also require further work to remove these ledges of glass.


The impact also needs to be firm. Random impacts to the glass promotes breakage other than along the score line.
  • ·        The taps need to be firm – neither light nor hard.
  • ·        Each tap should be at the end of the run begun by the previous one.  This promotes a smoother run of the score with less opportunity to start a run off the score line. 
  • ·        To avoid the incomplete running of the score that leaves parts of the score untouched you need care. As the glass begins to break along the score line, place the next impact at the end of that start to continue the run. 


Tapping the glass under the score should be a last rather than first resort in running a score.



Wednesday, 5 September 2018

Firing for 3mm Channels


A question has arisen on how to put together a design of pieces for a lamp, but only one layer thick, because 3mm is as thick as the fittings will accept.

The design has no overlaps, so it is a series of butted 3mm thick pieces.  Damming has not been successful in keeping the parts from retreating from one another.  This means that making the design as a single layer will not be successful.


The problem is how to make a two-layer piece that will be able to fit into 3mm fixings.

Design on oversize 3mm base

One way to overcome the fixings’ limitations is to make the bottom layer larger than the top.  The bottom can be any colour you choose.  Make the design on top of that. 

The designed pieces will need to fit snugly beside the fittings. However, the bottom needs to be cut larger than the final size, as it will retreat and become smaller during the firing.  About 20mm larger all around will usually be enough extra for ease of cutting down. If you fire with a larger base piece, you can cut it to size after firing, so it will fit the width of the opening and still fit inside the 3mm fitting space.  This will make your design proud of the fittings.  This may, or may not, be possible for the lamp’s fitting design.


An alternative

Maybe that is not the only way to look at the problem. There is another way.  It is essentially the opposite of the first approach. 

Make the top layer larger than bottom. The design will be on the top still, but with larger than final dimensions to accommodate the reduction in size of the single layer.  The bottom layer will need to be small enough to fit within the space between the fittings of the lamp.

To keep the unsupported parts of the upper layer in one plane, support the larger upper layer with 3mm fibre paper. Coat the fiber paper with boron nitride or cover with powdered kiln wash, Thinfire or Papyros to get a smoother back.  When fired, cut the piece to size.  If you like to score on the smoothest side, you can support the edge with the fibre paper or other 3mm substance.  If you are confident, you can score on the back with no special support.


These are two approaches to making a piece to fit in a 3mm channel.  This will apply to insertions of fused glass leaded glass panels, as the came is designed to accommodate 3 mm glass.

Wednesday, 29 August 2018

What Cartoon Lines Represent


A frequently asked question by novice glass workers is whether to score at one side of the line or in the middle.  This question revolves around the meaning of the cartoon lines.  What do the lines of a cartoon represent?


Meaning of Cartoon Lines
The lines on a cut line cartoon represent the space required between pieces of glass.  This will vary, depending on the style in which you are working.  In most glass working, a matrix of lead or foil is used.  The space required by these materials needs to be represented in the cut line cartoon. You may have other cartoons for other purposes – painting, came width, foil width, etc., but the lines in the cut line cartoon are there to represent the space required between pieces of glass.

An example of a cartoon for painting


Lead Came
In general, a 1.2mm line is required for standard lead came. This is close to the line made by a new bullet pointed felt tipped marker. If you are working with high heart cames, you will need a 2.8mm wide line. Some chisel point markers, if used on the sharp edge have this approximate width.

The glass is scored at the inside edge of the cartoon line.  This can be done by scoring directly on top of the cartoon, often with a light underneath.  You can make pattern pieces when the glass is too dense for enough light to come through.  If you must, you can draw the score line on the glass. You can score around pattern pieces, but if your scoring wheel goes over the pattern in any place, the scoring pressure will not be delivered to the glass.


Example of came varieties


Copper Foil
In copper foil, a much thinner line is used as the space between pieces of glass needs only be approximately 0.4mm. This is approximately the width of a sharpened pencil or ball point pen line.

The scoring is at the edge of the line as for lead came.  Also, you can score directly over the cartoon, draw on the glass, or make pattern pieces as for lead came projects.


Fusing Cartoons
When preparing a cartoon for fusing, the lines need to be as fine as possible.  The pieces of glass require no space, as they will be butted against each other.  However, unless cutting by computer controlled instruments, the cutting cannot be completely accurate, so the same size of line as for copper foil will do.

As you are going to try to butt the glass pieces together in fusing projects, you score along the middle of the cartoon lines.  As much as possible, cutting over the cartoon will give the best result.  Of course, there are many times when the light is not good enough and pattern pieces will be required. 

Another approach is also possible. Having scored and broken the first piece, you can place it on top of the glass to be cut for the adjoining one.  With a very fine felt tip or fountain pen, trace the edge of the first piece. Score down the middle of that line to create the best fitting second piece.  And so on through the whole project where the glass is not too dense to use a light box.


Conclusion

The line widths in a cartoon are determined by the space required between pieces by the assembly method.  The thicker the matrix material, the thicker the line and vice versa. 

Wednesday, 22 August 2018

Diagnosis of Cutting


If your scoring and breaking of your glass is not going well, you need to diagnose the reasons.  There are always a lot of suggestions that warming the glass will solve the problem. Yes, warming glass may help. A discussion of the effect is here. But it will not overcome any faults in the basic skills of scoring.


A lot of images, shown on the internet, of straight line scores failing to break along the score, indicate some possible elements in scoring that lead to these unwanted break-outs. 

One possibility is you are using too much pressure. A discussion of the amount of pressure required is here.  You should be scoring to the pressure required, rather than any sound that may come from scoring.  This is emphasised when cutting opalescent glass.  The correct scoring pressure makes almost no sound or only a gentle rumble as it cutter moves over the undulations of the glass.  The most frequent reason for more difficulty in breaking opalescent glass is excessive pressure while attempting to get the same sound as from transparent glass.  There are even a few transparent glasses that make little or no sound when being scored with the correct pressure.


Another common problem in scoring is keeping an even pressure throughout the score.  It can be difficult to keep the pressure even on complicated cuts.  When the cartoon has multiple curves or deep concave lines, it can be difficult to keep the pressure even as you move your body around to follow the line.  One piece of advice I received early on in my learning was to rehearse the score allowing the cutter wheel to move along the score line with virtually no pressure.  This shows how the piece of glass needs to be oriented to ease your movement around the glass to make the score.

Slowing the cutting speed can help to keep the pressure evenly distributed along the score.  Straight lines are often scored quickly.  But, even on straight lines, slowing the speed can make the pressure more even throughout the score.  It can also avoid variable speed during the scoring, which leads to different forces being placed on the glass.  The pressure may be consistent, but the effective pressure is greater when slow than when fast scoring is used.  If the speed is variable, the effective pressure differs along the score line.


A fourth thing that may be happening on straight lines is that the cutter wheel is at an oblique angle to the direction of the score.  This will often be heard as a scratching sound as you move along the score line.  This can be overcome by a gentle pressure against the straight edge you are using to align your score.  Of course, the straight edge needs to be held firmly to avoid having it move.  Allowing the head of the cutter to have a little freedom of movement also helps keep it parallel to the straight edge.


All this is merely speculation about your scoring practice.

You need to get someone to observe you scoring.  They do not need to be experts, nor other glass artists.  They just need to be observant. Tell them what you are looking for in each of the four elements of scoring and have them observe only one thing at a time.

First get scales that you can zero when you have a small piece of glass on it. Score without touching the glass. Have the observer tell you if the pressure was consistent throughout the score, and if you are in USA, whether the pressure was above 7 pounds or below 4 pounds. (For the rest of the world 3kg to 1.8kg). Practice until you can score consistently at about 2.2kg (ca. 5 pounds).

Second, have the observer stand a little distance from you. Score toward the observer. They need to observe whether your cutter is perpendicular to the glass while scoring and if there is any variation.


Next, they need to tell you if your head was directly above the cutter all the way through the score. They will be able to see whether your eye is directly above the cutter

Is your body behind the cutter, or do you use your arm to direct the cutter?  The observer will be able to tell that when you are scoring curves. The most consistent speed and pressure is delivered when the cutter is steered from your torso, rather than your arm and wrist.  It slows the scoring action, gives smoother curves, and more even pressure.


The last element, you can do yourself.  Once you are doing all the things above, you will be able to hear any scratching noise, rather than the gentle creaking noise of an even score with adequate pressure.  If the scratching noise is intermittent or only at one point, the likelihood is that you are twisting the cutter head, so the wheel is not in line with the score line.

Wednesday, 15 August 2018

Glass Overhanging Moulds

Glass Overhanging Moulds

Glass that overhangs moulds by too great an amount is likely to break upon cooling.  Even during slumping,with its lower than fusing temperature, glass expands.  Unless the overhanging glass is drawn into the mould while slumping, there will be some draped over the edge of the mould. When cooling, it begins to contract. 

This post shows the way in which glass behaves during the slump.  This may help with determining how much of an overlap is allowable.  If the mould has a broad, nearly horizontal rim, the glass will not rise and slip down into the mould enough to avoid  an overhang during the firing.  However, a mould with a small rim can accommodate an overhang.  Circumstances vary, but generally a 6mm overhang on a narrow rimmed mould will be safe.  For broad rimmed moulds, no overhang is safe.

The risk of breakage is not so great on steel, where the metal is contracting more than the glass.  However, all of us normally use ceramic moulds which expand and contract less than the glass.  This means the glass will trap the ceramic until the stress is relieved by breaking a part of the overhanging glass.


There are methods to support the overhanging glass during the slumping, as described in this blog post, which will eliminate the risk of the glass trapping the mould.