Showing posts with label Annealing temperature. Show all posts
Showing posts with label Annealing temperature. Show all posts

Monday, 30 December 2024

Annealing Strategies


This is a power point presentation I gave a few weeks ago to a group.  It may be of interest to others.  There is no commentary.







 

Wednesday, 5 July 2023

Coe and Annealing

If you have changed CoE (i.e., the manufacturer), then the annealing temperature is different. If you don't correct that, it's never going to work quite right.

 

I have several problems with this statement.

CoE does not determine the manufacturer. There are several manufacturers who claim to manufacture fusing glass to the same CoE.

No manufacturer makes to one CoE. All manufacturers have to vary the CoE of a particular glass to balance its viscosity. The CoE is a dependent variable. It depends on what the viscosity of the colour is. Spectrum at one point stated their System96 glass had a 10-point variation in CoE number. Oceanside will be no different. Bullseye have stated a 5-point difference. Other manufacturers have not stated their variations.

No manufacturer can guarantee compatibility with another’s. This is because the ingredients to make a fusing range of glass varies from one manufacturer to another. These variations can make the glass incompatible. To determine if you can combine two glasses from different manufacturers you need to do the compatibility testing yourself. The CoE number does not determine the temperature characteristics of the glass either. 

Annealing 

Having got my disagreements with the statement out of the way, I can go on to looking at differing annealing temperatures. There is a difference between annealing point and annealing temperature.

Annealing Range

Annealing occurs over a relatively small range between the softening point at the higher end to the strain point at the lower end of the range. The softening point is the temperature, above which the glass is so plastic that it cannot be annealed. The strain point is the temperature at which the glass becomes so solid than no annealing can occur below it.



Annealing Point

The annealing point is mathematically determined as the point at which the glass most quickly relieves the stresses within it. That temperature is determined by the viscosity of the glass. It is known as the glass transition point, and is expressed as Tg. In practice there are advantages in annealing at or below the published annealing point.

A soak above the annealing point is of no effect. Any equalisation of temperature that occurs on that soak is negated by the drop to the annealing point. It is better to spend the cumulative soak/hold time at the (lower) annealing temperature.

Annealing Temperature

The average annealing point for Bullseye is 516°C/962°F. Different formulations of their fusing compatible glass have different Tg temperatures. Research showed the best results for their thick glass is 482°C/900°F. Other research in academic institutions has shown that annealing at the lower part of the range provides a denser and stronger finished glass piece. This applies to thick as well as thin glass.

Bullseye has chosen to use a temperature 34°C/61°F below the average annealing point, based on their research. This is still about 7°C/13°F above the strain point. This approach can be applied to any fusing glass.

The strain point is approximately 43°C/78°F below the mathematically determined annealing point. If you know the annealing point you can choose to anneal – i.e., equalise the temperature of your glass – up to 30°C/54°F below that. 

This has a practical demonstration. Wissmach for some years designated 510°C/950°F as the annealing point for W96. A few years ago, they changed their recommended annealing temperature to be 482°C/900°F. The annealing results are good at both temperatures. The difference is that the annealing soak is for a in longer time at the lower than at the higher temperature. But it still provides a shorter annealing cool.

Firing with different anneal points

This apparent diversion - into annealing ranges - shows that it is possible to anneal glass with slightly different glass transition points at the same temperature. You may compromise a little for one glass or the other. You will also use longer times at the annealing temperature.

The annealing soak of Oceanside and Wissmach96 could both be at 482°C/900°F. Or, if it felt safer, it can be an average of the two. The average of the difference would make the annealing soak at 496°C/926°F. You would use a longer soak at this temperature than at the higher one. The safest would be to hold for an hour instead of 30 minutes for 6mm/0.25” of glass.

However, if the annealing point differs greatly, it is much more difficult. For example, float glass with an annealing point of 540°C/1005°F would be difficult to fit in the same firing with most fusing glass because of the wide range of official annealing points.

 

It is possible to anneal different glass at the same time if the annealing points are not widely different. Compromises need to be made.

 

Friday, 31 December 2021

Annealing Range

NOTE: completely revised 31 December 2021

After Bullseye published annealing tables for thick slabs, some people feel they need to use the lower part of the annealing range for all their glass. To determine whether or when to use these tables needs some understanding of the annealing range.

Range
The annealing range of a glass is approximately 40ºC/72ºF on either side of the annealing point, but for practical kiln forming purposes it is normally taken as 33ºC/60ºF. The annealing point is around 510ºC/950ºF for System 96; 516ºC/962ºF for Bullseye and Uroboros for example. The range for a fusing glass will be around 549ºC to 477ºC/1020ºF to 890ºF for fusing glasses. Although the upper half of that range is merely theoretical. The lower end of the range is the strain point.

The annealing soak is to equalise the temperature throughout the glass to within 5ºC. Once the annealing soak is complete, the first stage of cooling begins. This first 55ºC/100ºF below the annealing soak is essential to the adequate annealing of the glass.  And this illustrates the impracticality of annealing in the upper part of the range.  The first cool rate needs to be maintained to at least 55ºC/100ºF below the low end of the annealing range.

To exemplify this. It would be possible to start the annealing at about 550ºC/1020ºF for any of these glasses. But the slow rate of decline in temperature, following the equalisation soak, would need to be maintained for the whole range of 550ºC/1020ºF to 429ºC/805ºF, rather than just the 55ºC/100ºF from the anneal soak point. This would more than double the annealing cool time. This high temperature anneal is a much slower process, which – together with the more rapid relief of stress at the annealing point – is why the top of the range is never used for the temperature equalisation point. It is also why the Spectrum 96 soak above the annealing point was not essential.

Soak
The annealing point is the temperature at which, if all the glass is at the same temperature, the most rapid cooling can take place. To achieve that equalisation temperature (+ or – 5ºC throughout), the glass needs to be soaked at the annealing point for varying lenghts of time relating to thickness and other variables. To complete the anneal and keep the glass within that tight range of temperature, the anneal cool needs to be continued at a steady slow rate.

Lower part of annealing range
Bullseye now recommends the use of 482ºC/900ºF for  the temperature equalisation soak, but have increased the soak time from 30 minutes to one hour. Choosing to start the annealing process at the lower part of the annealing range speeds the process for thick slabs and is very conservative for thinner glass. Bullseye have not changed the composition of their glass so the anything annealed at 516ºC/960ºF for things 6mm/0.25" or less is still properly annealed.

Using the bottom end of the annealing range for thick items, means there are a fewer number of degrees of very slow cooling to the strain point. But this lower soak, or temperature equalisation point, requires a longer soak to equalise the temperature within the glass before the slow steady decline in temperature to maintain the temperature differentials within the glass to less than 5ºC.

Bullseye have found that using a temperature a bit above the bottom end – 482ºC/900ºF – with a long soak reduces the total time in the kiln, but continues to give a good anneal. In the case of Bullseye, 461ºC/863ºF is the bottom end of the annealing range according to the calculations indicated above. 



Wednesday, 15 September 2021

Digest of Principles for kiln forming

Some time ago people on a Facebook group were asked to give their top tips for kiln forming.  Looking through them showed a lot of detailed suggestions, but nothing which indicated that understanding the principles of fusing would be of high importance.  This digest is an attempt to remind people of the principles of kiln forming.

Understanding the principles and concepts of kilnforming assists with thinking about how to achieve your vision of the piece.  It helps with thinking about why failures have occurred.

Physical properties affecting kiln work

Heat
Heat is not just temperature. It includes time and speed.

 Time
       The time it takes to get to working temperatures is important.  The length of soaks is significant in producing the desired results.

 Gravity
       Gravity affects all kiln work.  The glass will move toward the lowest points, requiring level surfaces, and works to form glass to moulds.

 Viscosity
       Viscosity works toward an equilibrium thickness of glass. It varies according to temperature.

 Expansion
       As with all materials, glass changes dimensions with the input of heat.  Different compositions of glass expand at different rates from one another, and with increases in temperature.

       Glass is constantly tending toward crystallisation. Kiln working attempts to maintain the amorphous nature of the molecules.

 Glass Properties
·        Glass is mechanically strong,
·        it is hard, but partially elastic,
·        resistant to chemicals and corrosion,
·        it is resistant to thermal shock except within defined limits,
·        it absorbs and retains heat,
·        has well recognised optical properties, and
·        it is an electrical insulator. 

These properties can be used to our favour when kiln working, although they are often seen as limitations.

Concepts of Kiln Forming
Heat work
       Heat woris a combination of temperature and the time taken to reach the temperature.

 Volume control
       The viscosity of glass at fusing temperatures tends to equalise the glass thickness at 6-7mm. 

 Compatibility
       Balancing the major forces of expansion and viscosity creates glass which will combine with colours in its range without significant stress in the cooled piece.

 Annealing
       Annealing is the process of relieving the stresses within the glass to maintain an amorphous solid which has the characteristics we associate with glass.

 Degree of forming
       The degree of forming is determined by viscosity, heat work and gravity.  These determine the common levels of sintering, tack, contour, and full fusing, as well as casting and melting.

 Separators
       Once glass reaches its softening point, it sticks to almost everything.  Separators between glass and supporting surfaces are required.

 Supporting materials
       These are of a wide variety and often called kiln furniture.  They include posts, dams, moulds, and other materials to shape the glass during kilnforming.

 Inclusions
       Inclusions are non-glass materials that can be encased within the glass without causing excessive stress.  They can be organic, metallic or mineral. They are most often successful when thin, soft or flexible.

A full description of these principles can be found in the publication Principles for Kilnforming


Wednesday, 18 August 2021

Observations on Some Suggestions about Annealing

There are writings from a teacher attempting to make glass fusing simple.  Unfortunately, glass physics and chemistry are very complicated.  Attempting to avoid these complications leads to failures and other difficulties as the practitioner progresses. 

Proper annealing is one of the fundamentals to achieving sound kilnforming results.  Some suggestions have been made by a widely followed person to “simplify” the understanding of the annealing process.  Discussion of the meaning and importance of annealing can be found in many places, including here.  

Annealing temperatures
It has been suggested that the annealing temperatures can be inferred from the CoE of the glass that is being used. Discussion of what CoE is and is not can be found here and here.


Annealing temperatures are not directly related to the expansion coefficient (CoE) of the glass.  This can be shown from the published annealing temperatures for different glasses organised by presumed CoE:
·        “CoE96”: Wisssmach 96 - anneal at 482°C;  Oceanside - anneal at 515°C
·        “COE94”: Artista - anneal at 535°C
·        “CoE 93”: Kokomo - anneal between 507°C and 477°C – average 492°C
·        “CoE 90”: Bullseye - anneal at 482°C; Wissmach90 - anneal at 482°C; Uroboros FX90 - anneal at 525°C
·        “CoE 83”:
o   Pilkington (UK) float - anneal at 540°C;
o   typical USA float - anneal at 548°C;
o   Typical Australian float - anneal between 505°C and 525°C, average 515°C

This shows there is no direct relationship between CoE and annealing temperature.  Do not be tempted to use a CoE number to indicate an annealing temperature.  Go to the manufacturer’s web site to get the correct information.


Temperature equalisation soak
Annealing for any glass can occur over a range of temperatures.  The annealing point is the temperature at which the glass can most quickly be annealed.  However, the glass cannot be annealed if it is not all at the same temperature throughout the substance of the glass.  It has been shown through research done at the Bullseye Glass Company that a temperature difference of more than 5°C will leave stress within the glass piece. To ensure good annealing, adequate time must be given to the temperature equalisation process (annealing). 

From the Bullseye research the following times are required for an adequate anneal soak:
6mm /   1/4"            60 minutes
[9mm /  3/8"           90 minutes]
12mm  / 1/2"          120 minutes
[15mm  /   5/8"       150 minutes]
19mm   / 3/4"         180 minutes

[ ] = interpolated from the Bullseye chart for annealing thick slabs


Anneal Cooling
There are suggestions that a “second anneal” can be used on important pieces.  Other than observing that all pieces are important to the maker, the suggestion should be investigated.  On looking into the idea, it is essentially a second soak at 425°C, which is slightly below the strain point, rather than controlled cool from the anneal soak temperature.

It is reported that the Corning Museum of Glass considers 450°C as the lower strain point – the temperature below which no further relief of strain is possible.  This means that any secondary soak must occur above 450°C rather than the suggested 425°C. Such a soak is unnecessary if the appropriate cooling rates are used. 

Cooling Rate
Except in special circumstances, the cooling rate needs to be controlled as part of the annealing process.  Soaking the glass at the anneal is not the completion of the annealing.  Most practitioners follow the practice of choosing a slow rate of cooling from the annealing soak to some point below the strain point rather than a rapid one with a soak at the strain point temperature.

Annealing is not just the soak time (which is there to equalise the temperature), it is about the rate of the annealing cool too. The rate at which you cool is dependent on the thickness of the glass piece and whether it is all of one thickness or of variable thicknesses.

Even thickness
                                         Cooling rate
Dimension      time (mins)     1st 55°C   2nd 55°C
6mm              60                 83°C       150°C
9mm              90                 69°C       125°C
12mm            120                55°C       99°C
15mm            150                37°C       63°C
19mm            180                25°C       27°C

The “first 55°C” and the “second 55°C” refer to the temperature range below the chosen annealing temperature.  So, if you choose to anneal at 515°C, the “first 55°C” is from 515°C to 460°C and the “second 55°C is from 460°C to 405°C.  If you choose 482°C as the annealing temperature, the “first 55°C” is from 482°C to 427°C and the “second 55°C from 427°C to 372°C.

Tack fused/ uneven thickness
If your piece is tack fused, you need to treat the annealing rate and soak as though it were twice the actual total thickness. This gives the following times and rates:

Tack fused
Dimension (mm)                                Cooling rate
Actual     Calculated       time (mins)     1st 55°C   2nd 55°C
6            12                 120                55°C       99°C
9            18                 150                37°C       63°C
12          25                 180                25°C       27°C
15          30                 300                37°C       63°C
18          38                 360                7°C         12°C

Contour fusing required firing as though the piece were 1.5 times thicker.  Sharp tack or laminating requires 2.5 times the the actual thickness.

Fusing on the floor of the kiln
There is a further possible complication if you are doing your fusing on the kiln floor, or a shelf resting on the floor of the kiln.  In this case you need to use the times and rates for glass that is at least 3mm thicker than the piece actually is. 

Thus, a flat 6mm piece on a shelf on the floor would use the times and rates for 9mm: anneal soak for 90 minutes, anneal cool at 69°C to 427°C and then at 124°C to 371°C.  It would be safest if you continued to control the cooling to room temperature at no more than 400°C per hour.

But if it were a tack fused piece of a total of 6mm you would use the times and rates for 18mm.  This is using the rates for twice the total thickness plus the additional 3mm for being on the base of the kiln.  This gives the times and rates as being an anneal soak of 360 minutes and cooling rates of 7°C to 427°C and 12°C to 370, followed by 40°C per hour to room temperature.  Any quicker rates should be tested for residual stress before use.


Source for the annealing and cooling of fused glass
These times and rates are based on the table derived from Bullseye research, which is published and available on the Bullseye site.   It is applicable to all fusing glass with adjustments for differing annealing soak temperatures.


Annealing over multiple firings
It has been recommended by this widely followed person that the annealing soak should be extended each time subsequent to the first firing.  I am uncertain about the reasoning behind this suggestion. But the reasons for discounting it are related to adequate annealing and what is done between firings.

If the annealing is adequate for the first firing, it will be adequate for subsequent firings unless you have made significant alterations to the piece.  If you have added another layer to a full fused piece, for example and are using a tack fuse, you will need to anneal for longer, because the style and thickness have been altered.  Not because it is a second firing.  If you are slumping a fired piece, the annealing does not need to be any different than the original firing.

The only time the annealing needs to be altered is when you have significantly changed the thickness of the piece, or the style of fusing (mainly tacking additional items to the full fused piece).  This is when you need to look at the schedules you are planning to use to ensure your heat up is slow enough, that your annealing soak is long enough, and the cool slow enough for the altered conditions.


Determining the annealing point of unknown glass
You don’t have to guess at the annealing temperature for an unknown glass.  You can test for it.  It is known as the slump point test.

This test gives the softening point of the glass and from that the annealing point can be calculated.  This test removes the guess work from choosing a temperature at which to perform the anneal soak. The anneal temperature is important to the result of the firing.  This alone makes this test to give certainty about the annealing temperature worthwhile.

You can anneal soak at the calculated temperature, or at 30°C below it to reduce the anneal cool time.  This is because the annealing can occur over a range of temperatures.  The annealing occurs slowly at the top and bottom of the range. But is at least risk of "fixing in" the stress of an uneven distribution of temperature during the cool when the annealing is done at the lower end of the range.



Do not be fooled into thinking that CoE determines annealing temperatures.  Use published tables, especially the Bullseye table Annealing for Thick Slabs to determine soak times and cooling rates.  Use the standard test for determining the softening and annealing points of unknown glasses.


Further information is available in the ebook Low Temperature Kiln Forming.

Wednesday, 21 April 2021

Soaks Below the Softening Point

There are frequent suggestions that holds in the rise of temperature for glass are required.  Various justifications are given.  A few notes before getting to the explanation of why they are uncessary.

A note is required about the softening point sometimes called the upper strain point. There is a reasonable amount of discussion about the lower strain point.  So much that it is often simply referred to as the strain point.    Below the lower strain point, the glass becomes so stiff and brittle that no further annealing can occur.  Thermal shock can happen though, so the cooling needs to be controlled.

There also is an upper point at which the behaviour of the glass is different.  Above this temperature, no annealing can occur either, because the glass has become plastic and the molecules randomly arranged.  It is only just pliable, of course, but its molecules are no longer strongly bound to one another.  This is the temperature at which much of slumping is done.

It is disputed whether such a point exists.  Still, in practical terms it is where the glass becomes so plastic that it cannot be temperature shocked.  The temperature of this “point” is approximately 45°C above the annealing point, rather than the temperature equalisation soak. 

Note that the temperature at which Bullseye recommends that the annealing soak should occur is a temperature equalisation point, which is about 33°C below the glass transition temperature - the point at which glass can be most quickly annealed.  The average glass transition point for Bullseye is 516°C.  Most other fusing glasses use the glass transition (Tg) point as the annealing temperature for the soak.  They or you could employ the Bullseye technique on thicker slabs of the glass by setting the temperature equalisation point 33°C below the annealing point, and soaking for the same kinds of time used in the Bullseye chart for annealing thick slabs.  In fact, this is what Wissmach has recently done with its W90 and W96 fusing glass ranges.  They now recommend 482C (900F) as the anneal soak temperature.

Now to the point of the post.

The soaks that are often put into schedules on the rise in temperature are justified as allowing the glass to equalise in temperature.  Glass in its brittle phase is an excellent insulator.  This means that heat does not travel quickly through the glass.  Consequently glass behaves best with steady and even rises in temperature (and correspondingly on the reduction in temperature).  Rapid rates risk breaking the glass on the temperature rise, no matter how many or how long the holds are.  

This means a slower rate of advance will accomplish the heating of the glass in the same amount of time, and in a safer manner, than rapid rises with short soaks/dwells/holds.  The slower rate of temperature increase allows the glass to absorb and distribute the heat more evenly.  This slow heating is most obviously required in tack fusing where there are different thicknesses of glass.  


This means that it is possible for thin areas of glass to heat up much more quickly than glass covered by different thicknesses of glass.  It also applies to strongly contrasting colours such as black and white, because they absorb the heat differently - black more quickly than white.

There are, of course, circumstances where soaks at intervals are required – usually because of mould characteristics, in slumping, and in pate de verre.

Sometimes people add a soak at the annealing temperature on the way up in their schedules.  This is unnecessary.  If the glass has survived up to this point without breaking, it is highly unlikely it will break with a further increase in the rate of advance unless it is very fast.  The temperature after all, is above the strain point meaning the glass is no longer in the brittle phase.

Many people add a soak at around 540°C (ca. 1000°F) into their schedule on the increase in temperature, before their rapid rate of advance to the top temperature.  The choice of this temperature relates to the lower strain point.  This also is unnecessary, except possibly for very thick pieces. By this time the glass has reached its plastic stage and if it hasn’t broken by then, it won’t with a rapid rise in temperature either.

Further information is available in the ebook Low Temperature Kiln Forming.

Soaks at various temperatures during the advance to the upper strain points of glass are not necessary.  What is necessary is a knowledge of when the glass becomes plastic in its behaviour, and an understanding of how soaks can overcome characteristics of moulds, or how to achieve specific results and appearances of the glass.


Wednesday, 13 January 2021

Annealing Bullseye and Oceanside Together

Credit: Bullseye FAQ_kilnforming_annealing


The question sometimes arises as to whether Bullseye and Oceanside can be annealed in the same firing, since the two glasses cannot be combined in the same piece.  They also have different published annealing soak temperatures (also known as the annealing point).  The explanation requires some knowledge of annealing.

Annealing can be done at other than the annealing point. This is because annealing can be done over a range rather than being a single magic figure. Bullseye did not change their glass when they altered the recommended anneal temperature.  This means that the annealing point is still at 516°C. Their research has shown that good annealing results are obtained by doing the temperature equalisation soak at the lower end of the range.  Temperature equalisation throughout the piece is what happens during the annealing soak. Therefore, it is a descriptive term for what happens at the annealing temperature.

Bullseye's previous annealing temperature was 516°C/960F and Spectrum's was/is 510°C/950F. These are very close, and in the past, many chose to anneal at either - or in most cases, both - of these temperatures. Bullseye's research has shown doing the temperature equalisation at the lower end of the annealing range provides good results and ones that are more reliable than the higher temperature.  This research is applicable to all soda lime glasses, not just Bullseye. Therefore, the same principles can be applied to Oceanside fusing compatible glass, or any other fusing compatible glass. This further indicates that you can anneal both Bullseye and Oceanside fusing compatible glasses at the same temperature. 

Further support to this view of the possibility of annealing the two glasses at the same time and temperature is given by Wissmach.  Wissmach W90 and W96 now are both given the annealing temperature soak as 482°C/900F.  Previously they both had been at 510°C/960F.

If you feel the need to compensate for the annealing point differences, you can increase the 482°C for Bullseye by 6°C to 488°C for both. Although I don't think it is necessary, 488°C will be fine for Bullseye and safe for Oceanside.

Revised 2.1.25

Wednesday, 30 December 2020

Float annealing


As a result of various memory failures, I've done a bit of searching on the annealing of float glass.  There are now various compositions of float glass and with different coatings for various applications.

This leads to a variety of annealing points for Pilkington float glasses.  The search led to various hard to find documents, which indicate a range of annealing temperatures between 548°C/1019°F and 559°C/1039°F.  This is not a huge range, so anywhere between 548°C/1019°F and 560°C/1041°F can be taken as the annealing point.  Pilkington indicate that optifloat has an annealing point of 548°C/1019°F.

The strain point seems to be mostly between 525°C/978°F and 530°C/987°F for all the varieties.  This indicates the temperature equalisation soak should not be less than 535°C/996°F.

The conclusion seems to be that annealing should have a temperature equalisation soak between 550°C/1023°F and 535°C/996°F.  It will not matter much where you choose, but remember that the closer to the strain point you do the temperature equalisation, the longer the soak should be.  The length of soak at 535°C/996°F can be determined by use of the Bullseye chart for Annealing Thick Slabs.  This gives the times and rates for the anneal cooling of glass by thickness.  The annealing  temperature needs to be changed, but otherwise the information can be applied directly from the chart.

The softening point seems to be 725°C/1338°F for all the glasses. This is a good low temperature for slumping.


Revised 5.1.25