Showing posts with label Mould Vents. Show all posts
Showing posts with label Mould Vents. Show all posts

Wednesday, 25 September 2024

Deep Slumps with Bubbles

 

Photo Credit: Rachel Meadows-Ibrahim

The main causes of the large thin bubble is most probably  too high a temperature combined with a long soak.

Elevation of the Mould

The poster indicated there are eight holes total – four on the sides and four under the glass. This means any air has an exit out from under the glass and from the inside of the mould. So, in this case it does not need to be elevated for exit of air.  In my practice l have never, except in tests, elevated my slumping moulds. I have not had failures. My experiments involved in writing the eBook Low Temperature Kilnforming  showed no significant temperature differences between elevating, or not, below the mould.

Effect of Fast Rates

Slow rates to low temperatures with long soaks avoid sealing the glass to the mould. This means air can move out from under the glass during the slump. 

  • Fast rates, and elevated temperatures can restrict air movement from under the slumping glass.  
  • Fast rates and high slump temperatures can each cause uprisings because the glass slides down the mould during the soak, and that weight pushes the bottom upwards.

Temperature and Uprisings

This uprising is different from the bubble at the bottom on this piece. It is possible to see the glass bubble is thinner than the surrounding glass. As there were holes for air to escape, it seems the temperature and or speed was great enough to allow the glass to form to the mould at the bottom.  This covered the air holes and allowed the remaining air to push upwards on the glass.  A lower top temperature may have avoided this bubble formation.  Certainly, a combination of a slower rate and a lower temperature would have avoided the formation of the bubble.

Observation

Further, observation during the firing would have caught this bubble formation early enough to skip to the annealing and result in a piece with only a slight uprising, and before it became a bubble. Peeking should start at the beginning of the slumping soak and be repeated at 5 to 10 minute intervals.

Wednesday, 18 January 2023

Problems when Slumping

A range of problems appear in slumping.  These include bubbles, splits, puddling and more. Several causes are possible.  This blog looks at the problems, possible causes and remedies.

Bubbles




Blocked Vent Holes

 Absence of, or blocked holes at the bottom of the mould to allow air out into the kiln on all but shallow or cylindrical moulds can be a cause of bubbles. Prop the mould up on stilts if the hole does not go directly from under the glass and out of the side of the mould. Alternatively, drill a hole in the side to allow the air to escape from under the mould.

Wet moulds

In kiln forming, the moisture resulting from recently applied kiln wash is considered by some to be a cause of bubbles. The water in the mould will be evaporated by around 250°C/482°F in any sensible slumping schedule. At this temperature, the glass will not have begun to move, so the moisture can move out of the mould through any vent holes at the bottom of the mould, or past the glass as it rests on the edge of the mould.

The circumstance when a damp slumping mould could cause difficulties is when using an extremely fast rise of temperature. This is detrimental to the mould also, as the rapid formation of steam is more likely to break the mould rather than the glass. It is also unlikely to result in a good slump conforming to the mould without significant marking.

In casting with wet plaster/silica moulds water vapour can move toward the glass. Casting practice has alleviated some of the problem, by having an extended steam out before 200°C/395°F, or pouring the glass into the hot dry mould from a reservoir.

In pate de verre, the mould is most often packed while wet. The small particles normally allow any steaming of moisture to pass through, and so be dry at forming temperatures without blowing any bubbles.

Top Temperature

Bubbles at the bottom of the glass are much more likely to be the result of too high a process temperature if the previous two conditions are met. This high temperature allows the glass to slide down the mould.  The glass is not plastic enough to thicken and form a puddle at the bottom at most slumping temperatures. Instead, it begins to be pushed up from the lowest point due to the weight of the glass sliding down the sides.

 

Avoiding uprisings on the bottom of bowls.

Vent Holes

Make sure the holes are clear before placing the glass.

Wet Moulds

Ensure that the moulds are no more than damp before placing in the kiln.

Top Temperature

Firing for too long or at too high a temperature will cause the glass to continue sliding down. Having nowhere else to go, the bottom begins rising. This is the result of the weight of glass pressing down onto the bottom, especially on steep-sided moulds. This is a consistent experience across several kilns and with multiple users.

Low Slumping Temperatures.

Glass at low temperatures is affected largely by its weight and viscosity.

Viscosity Effects

Thick glass will fall more slowly than thin, when using the same schedule. Thick glass takes longer to equalise the upper and lower surface temperatures. Since the lower surface is stiffer (has a higher viscosity) it will move less using the same heat up rate. This means slower rates should be used, or a significant soak just above the strain point will be required. This softening of the glass evenly throughout the rise to the top temperature is critical in obtaining even slumps.



Splits in slumps

Without the slow progress to top temperature there can be problems. Sometimes the upper surface of the slump appears fine. It is the bottom that exhibits a split or tear that does not go all the way to the upper surface of the glass. It indicates the rate of advance was too - but only just - too fast to achieve the desired result.

 The ramp rate has been quick enough to get the top heated and become plastic. But the lower surface is still cold enough that it is brittle. The weight of the upper softened glass begins to push down before the bottom has become hot enough to be fully plastic. The force of the weight on the bottom can be enough to cause the glass to separate, rather than move as the surface does. This split on the bottom but not the top indicates a slower rate for that thickness is required. This shows the interaction between viscosity and weight.

 Sometimes the split is evident from the top. The cause of this kind of split is the same as a split on the bottom. But the ramp rate has been much faster in relation to the thickness or profile of the piece.



Weight

It is possible to have glass slightly overhang slumping moulds if you use low temperatures. The glass has the appearance of behaving differently at these low temperatures than at fusing temperatures.  

 

At low temperatures it cannot form exactly to the mould. It falls first in the middle. Because the glass is not very plastic, the edges rise up from the mould at first, because the weight there is not great enough to allow the unsupported glass to bend. The edges stay in line with the beginning of the bend in the middle.  

 

At the beginning of the slump the glass is not soft enough to stretch. It maintains its dimensions as it falls. For deep moulds, the glass moves progressively to move over the lip of the mould and begins to fall into the mould.



As the slump proceeds, the glass stretches very little and so the edges move further down the mould. The glass continues to slide down at the edges until the centre settles down onto the mould bottom. 



During this slide into place, the glass can become marked. This is usually most evident on back of the upper portions of the glass where most sliding is happening.

 With higher than necessary temperatures, the glass can continue to slide down the mould. Since the glass is still not fully plastic, the weight pushes the glass at the bottom upwards. This gives the appearance of a bubble, but is an uprising due to the pressure of the glass at the sides of the mould.

 


During the sliding of the glass along the mould, it becomes more marked. The marks often look like stretch marks. And in many senses, it is exactly that.

At higher temperatures or longer holds, the glass softens more. At this point the uprising collapses and the glass begins to thicken at the bottom. It also thins slightly at the top.


Remedies

Ramp Rates

The ramp rates should be slow.

  • ·        This allows the glass to heat evenly throughout. This is important to get even slumps. 
  •          Contrasting colours or a combination of opalescent and transparent glasses heat evenly with slow rates.
  • ·        Slow rates allow glass with tack profiles to heat evenly.
  • ·        It helps avoid splits in the bottom of slumped glass.
  • ·        It allows lower slump temperature to be used.

Low Temperatures

Using the lowest practical slumping temperature gives the best results.

  • ·        It allows glass with small overhangs of the mould to be successfully slumped.
  • ·        Low temperature reduces the mould marks on the back of the glass.
  • ·        Fewer stretch marks are in evidence.
  • ·        Low slumping temperatures with long soaks reduce the uneven slump that is sometimes in evidence with deeper moulds.
  • ·        Low temperatures allow different colours to heat more evenly.
  • ·        Low temperatures reduce the thinning or thickening of glass in a high temperature slump.

More information is available here.

This information shows you need to keep the slumping temperature to the minimum required. To find out what that temperature is, watch the slumping in stages in brief peeks (do not stare!). Look at the piece for a second or two every five minutes before you reach your desired temperature and at intervals throughout the hold.

If it has slumped completely at the beginning of the hold, you are firing too high. Reduce your temperature in subsequent firings and watch in the same way to find what the required temperature and time is. There is absolutely no substitute in slumping but to watch by peeking to learn what your mould and glass require. 

What Temperature?

To determine the temperature needed for your piece, use slow ramp rates – between 100°C to 150°C/ 180°F to 270°F. Set your top temperature around 630°C/1170°F for a simple slump of fusing glass. For bottle or window glass you will need a temperature closer to 720°C/1330°F.

It is necessary to observe the progress of the slump as you do not know the best slumping temperature. Start watching the glass at about 10-minute intervals from about 600°C/1110°F. There is not much light in the kiln at this temperature, so an external light is useful. You can also observe the reflections of the elements on the glass. When the image of the elements begins to curve, you know the glass is beginning to bend. You then know that is the lowest possible slumping temperature when using that ramp rate.

Hold for at least 30 mins at the temperature when the glass begins to visibly drop. This may or may not be long enough. Continue checking at 5-10 minute intervals to know when the slump is complete. If the glass is completely slumped before the soak time is finished, advance to the next segment. If not fully slumped, you need to extend the soak time. These operations mean you need to know how to alter your schedule while firing. Consult your controller manual to learn how to do these things. Stop the hold when complete and advance to the anneal.

In some cases, you may need to increase temperature you set by 5-10°C. You can do this by scheduling a couple of segments with 10°C/18°F higher temperature each and 30 minute soaks each.  If you do not need them, you can skip them. If you do need the extra temperature, you have it scheduled already.  You will know if you need the extra segments by whether the glass has begun to curve at the start of the first of the soaks.  If it has not after 10 minutes, skip to the next segment. Once the new temperature has been reached, check for a curve in the glass. Again, if after 10 minutes there is no curve, skip to the next (higher temperature) segment.

A low temperature slump will allow the glass to conform to the shape of the mould without softening so much that it takes up all the markings of the mould. That in turn means there are spaces for the air to escape from under the glass all the way to the slumping temperature as well as through the air holes at the bottom. It also gives the most mark-free slump possible for your shape.

If you are slumping at such a temperature that the glass has sealed to the mould, you are firing too hot anyway. Or put more positively, use a low temperature slump, that is, a slump at the lowest temperature to achieve the desired result over an extended period of your choice.


More information is available in the eBook Low Temperature Kilnforming available through Etsy or Bullseye.

Wednesday, 1 September 2021

Texture moulds



"I could use some help here please. I’ve tried this sun mould 3x and as you can see all 3x I get a hole.  If you could tell me what I’ve done wrong I would greatly appreciate. They were all full fused to 1430F (776C)."
Example of the problem



There are a range of views that have been given on how to make texture moulds work without the glass developing bubbles.

closer view of one example

These are a summary of the suggestions made to the enquirer.

Not enough glass thickness. The view is that glass needs to be 6mm thick to be used on texture moulds, as the viscosity of glass tends to draw glass to that thickness, robbing from other areas making them thin and prone to bubbles.

Glass always wants to go to 6mm.  Not always.  It depends on temperature.  The kiln forming temperatures we use results in a viscosity that tends to equalise the forces at 6 – 7 mm.  Hotter glass will flow out more thinly, until at about 1200C, the glass is 1mm or less thick.

Full fuse two sheets first.  The object is to avoid placing two separate sheets on top of the mould, creating the potential for more bubbles between the sheets, as they may slump into the mould at different rates.

Too hot. As the glass increases in temperature the viscosity is reduced and can no longer resist the air pressure underneath the glass.

Use a lower temperature. The idea is to keep the glass relatively stiff to resist bubble formation.

Bubble squeeze needed to avoid trapped air.  Another way to reduce the amount of air under the glass is to allow the glass to relax slowly at a temperature below which the glass becomes sticky.

Elevate the mould.  The idea is that hot air circulating under the mould will help equalise the temperature of the mould and the glass.

Drill holes at low points. This gives air escape routes under the mould, assuming the mould is slightly elevated.

Go lower and slower.  Use a slower rate of advance toward a lower top temperature with longer soaks to avoid reducing the viscosity, but still get the impression from the mould.


Now for a different viewpoint.

None of the views given above are wrong, but they all (except in one case) fail to consider the fundamentals of obtaining texture from such a mould.

It is apparent that the temperature used was too high because the glass had low enough viscosity to allow the air underneath to blow the bubble.  The suggestions of thicker glass, bubble squeezes, lower temperatures, drilling holes and elevation of the mould are ways of reducing the amount of air or resisting the air pressure.  They are not wrong, but miss the fundamental point.

That fundamental point is that you need to raise the temperature slowly on these texture moulds to allow the glass to fully heat throughout. By doing this most of the air has a chance to filter out from under the glass before it conforms to the edges of the mould.  It is simpler to use the slow advance rather than a quick one with a slow-down for a bubble squeeze.  The glass is more certain to be the same temperature throughout by using a slow rate of advance.  Glass with an even temperature can conform more easily to the undulations and textures of the mould.

Mostly, the recommendations given are to use two layers, or 6mm of glass that has already been fused together.  This gives greater resistance to bubble formation and reduces the dogboning and needling of the edges.

However, you can form in these moulds with single layers.  There are of course certain conditions:
  • You must advance the temperature slowly.  A rate of 100C per hour will be fast enough.
  • You can add a bubble squeeze soak of 30 minutes at about 630C as additional assurance of removing most of the air.  The bubble squeeze is done at a lower temperature than usual, as the glass is less viscous because the slow rate of advance has put more heat work into the glass.
  • The top temperature should not go beyond 720C. Beyond that temperature the viscosity of the glass drops quickly and so becomes subject to bubble formation.


The soak at the forming temperature will need to be long and observation will be needed to determine when the glass has fully conformed to the mould. Quick peeks at intervals will show when the design is visible on the top of the glass. The time will vary by:
  • Mould texture complexity 
  • Type of glass (opalescent or transparent),
  • Heat forming characteristics of the glass,
  • Viscosity of the glass or colour,
  • Etc. 

Be knowledgeable about how to extend the soak or to advance to the next segment of the schedule to take advantage of your observations.

Your observation may show that you can do the texture formation at a lower temperature in future. This will provide results with less separator pickup and better conformation to the mould without excessive marking. 

You will need a long soak in either circumstance. This will be in terms of hours not minutes.  If you do these texture moulds at slumping temperatures, you will probably need at least twice your normal soak.

You can do a lot to fool the single layer glass into doing what you want by using low temperatures and long soaks. See Bob Leatherbarrows's book on Firing Schedules.  He gives a lot of information on how to manipulate glass through heat work - the combination of temperature and time.  You might also consider obtaining my book - Low Temperature Kilnforming.


Most of the search for the right temperature, fails to note that the important element is how you get to the temperature. You can get the same result at different temperatures by using different rates of advance.

Kilnforming is more than temperature, it is also about time and the rate of getting to the temperature. By concentrating on temperature, we miss out on controlling the speed and the soak times. You can do so much more to control the behaviour of the glass at slow rates, significantly long soaks, and low temperatures.

Wednesday, 25 November 2020

Removing Shelves for Slumping



There are those who advocate removing the kiln shelf(s) before slumping.  The advantages claimed include:

Better heat distribution around mould.  The shelf acts as a heat sink. During the firing the shelf absorbs heat and during the cooling the heat is released, so slowing the cool down. 

Additional height. For kilns with little head room, greater height is provided by this practice.

Observations
My observations on this practice lead me to some questions about the necessity, desirability and in some cases the practicality of it.

Elevation of mould above the shelf
This is a widely recommended practice.  I haven’t found the need, but many people do.  One of the points of this is to allow increased air circulation around the mould and under the bottom.  Another is to let air out from under the bottom of the mould to avoid creating air pockets between the mould and the glass.

If the elevation of the mould allows air circulation, what is the necessity to remove the shelf?  There is air circulation around the bottom of the shelf and of the mould. If the mould is placed on the floor of the kiln, the mould will still need to be raised from the bed of the kiln to allow air circulation under the mould. Of course, if the kiln does not have enough space for the height of the mould, it will be necessary to remove the shelf, but not for circulation purposes.

There is also the fact that the floor of the kiln is most often made of refractory bricks even if the walls and top are of refractory fibre.  This also is a heat sink.  I don’t see the advantage of removing the shelf to avoid a heat sink when the base of the kiln works in holding heat in the same way as the shelf.


Difficulty of removing shelves from some kilns
It is difficult to remove shelves from many kilns.  This can be avoidance of damage to the thermocouple; difficulty of getting fingers around the shelf; weight; size; or even depth of the kiln.  It is impractical to remove the shelves from kilns of this nature.  It is still possible to get a good slump in these kilns.


Uneven cooling of the glass
Research shows long soaks lead to a cooler bottom of the glass than top during the anneal – sometimes greater than the +/- 5°C for adequate annealing.  This is a consequence of the fact that the hot air above the glass is not balanced by the same amount of heat below the glass.  So, there may be good arguments for retaining that heat sink of a shelf under the mould to more evenly balance the cooling of the upper and lower surfaces of the glass during the anneal soak and cool.

Height
I don’t have any argument that when extra height is needed, as removing the shelf will provide some.



Some consideration needs to be given on whether to remove the kiln shelf when slumping.  Research implies that increased cooling of the bottom of the glass may go outside the parameters for the even cooling of the glass.

Wednesday, 23 October 2019

Are Holes Needed in Stainless Steel Moulds?



 “Do you drill holes in the bottom of the stainless steel moulds the same as with the ceramic ones? I imagine so, as the air issue is the same?”

When draping over stainless, holes are not required unless there is a depression at the highest point.  It is debatable whether required even then.  The steel is expanding more than the glass during the heat up and contracting more on cool down.  This effect means there is sufficient space for any air to escape.



In slumping moulds, stainless needs to have a significant draft to avoid the steel trapping the glass during its greater contraction during the cooling.  The bowl in the above image has a sufficient angle to allow the easy release of the formed glass.  The combination of the draft and the greater expansion during heating allows air to flow from under the glass, unlike ceramic where the glass is the faster expanding material.  The greater expansion of steel leads to less chance of the glass sealing to the mould and creating bubbles. 

However, there is no harm in being cautious by drilling small holes at the last places the glass will touch down.  These usually are at the join of the curve and the flat bottom.  The glass will touch down first in the middle of the bottom, so no hole is required there.

Wednesday, 1 November 2017

Holes vs. Elevation of Moulds

Drilling holes and raising the mould are not the same. They achieve different things.  Drilling holes allows air out from between the mould and the glass.  
There are some things you need to check about the vent holes in moulds.

            Are the holes in the mould at last touchdown point(s)?


Sometimes the vent holes in moulds are made at convenient points rather than at the places where the glass will last touch the surface of the mould.  On a simple ball mould, a hole at the centre will be appropriate, as this is the last place the glass will touch. 

 On a bowl with a square base, the last places the glass will touch are the corners, so that is where the holes need to be.

The vent holes in this could also be at the other two angles in addition to those at the top and bottom of the picture.



Are there holes in the side of mould to allow air out from under the mould?


If there is one or more, there is no need to elevate the mould.  The air will move out from under the mould through the hole in the side. In general, moulds are not so uniform on their base that they fit the shelf enough to seal the displaced and expanding air underneath the mould. But you can be safe by elevating the mould on pieces of 1mm or 3mm fibre paper.

This mould has side vents, although the holes at the base may be a little large.



Are the holes clear?

This is more important.  If the vent holes are not open due to kiln wash or other things blocking the space, there will be no escape for the air.  The vents need to be checked on each firing to ensure they are open.
  

Does the mould need holes at all?

There are shallow slumpers and other simple moulds - such as a wave mould or any cylindrical mould form - that do not need vent holes, either because they are so shallow, or because the air can escape along the length of the mould.

More information can be found in this and related blog posts.



Large thick bubbles at the bottom of the glass

Not all large bubbles at the bottom are the result of the lack of holes.  Sometimes they are the results of too fast or too high a firing. Some notes on this are given in this blog entry. 



What does elevating the mould do?

The purpose of elevation is not allow air to escape from under the glass, although that may be a by-product.  Elevating the mould allows marginally more even cooling of the mould and glass if it is on a thick kiln shelf. It will not create any problems, but you need to be careful about how near the elements it will place the glass.  The elevation does not need to be more than 25mm, just as for the shelf above the floor of the kiln.


Wednesday, 28 September 2016

Bubbles in Casting Mould Firings


There seems to be an increasing popularity for re-useable ceramic casting moulds. One of the common problems with these moulds is bubbles.  

Frit size 
It rather depends on the sizes of the frit and cullet used as to how many and what kind of bubbles are created. The converse of expectations is what happens.  You get more small bubbles with powders and fine frits than with coarser frits.  The small bubbles rise and coalesce to form larger bubbles which rise more slowly as they have to push through a greater mass of material (just as in a liquid). Since glass is viscous, these little bubbles usually do not have time to push their way through the glass at fusing temperatures.  But at casting temperatures, there is less resistance from the glass, as it is less viscous, and so the bubbles can clump together and form the larger bubbles that burst through the surface.

Temperature range and rate of advance
The amount and kind of bubble also depends on the speed of the ramp and the bubble squeeze you give it. If you proceed rapidly to top temperature, you will have to go to a higher temperature, allowing the surface to become more plastic and be pushed out of the way by the expanding air that almost certainly is in the mix. A slow rise will allow all the glass to become the same temperature throughout without using a high top temperature, so reducing the risk of the bubbles pushing through the more viscous glass to the surface.

Vents
All these problems would be reduced by having a vent or sprue to allow the air out from the bottom. Almost all purpose made casting moulds have these things. Sometimes they are as thin as a few hairs (from somebody with long hair) to as thick as a toothpick. As you have to do some cold work on the results from these moulds anyway, a few little strands of glass should be no problem to clean up. If the manufacturers won't do it, it is possible to take your Dremel or similar drilling tool and with a fine drill bit and make these tiny holes in appropriate places.  

I do not understand why these casting moulds do not have tiny air vents at the bottom of the depressions. Yes, there would be a tiny pimple on the surface of the final piece, but this can be cleaned away easily. The holes could be really small diameter ones. They just need to be opened after each 
separator coating with a fine wire. I'd be sending the ones without vents back to the manufacturer as not fit for purpose. If these moulds had vent holes, they would be a lot less bubble prone. 

Master moulds
If the mould continues to give trouble with bubbles, it might be best to take a negative of the mould that you can keep as a master.  Then make one-use investment moulds from this master positive as you need. Investment moulds usually allow air to move through the material pretty well, but you can add sprues if you want.

Reservoirs
A further possibility is to drip the glass into the mould.  To do this you need to place a ceramic pot, supported by kiln furniture, above the mould with the glass for the casting in it.  Take to a temperature between 850°C and 900°C, depending on how long you wish to wait for the glass to flow out of the pot and into the casting mould.  The action of the glass forming in the pot eliminates many of the bubbles caused by frits and powders.  A further advantage is that this forming in the pot eliminates the possibility of the edges of the original glass pieces being seen. It would also allow you to add a different colour causing swirls or wisps of colour to move through the main colour.


The main focus is to eliminate the bubble formation.  This can be done with vents, adjusting the schedule, modifying the method by melting the glass into the mould, or making a master and individual investment moulds.  You can also combine several of these methods in one firing if you wish.

Wednesday, 30 September 2015

Relationships of bubbles to more holes in moulds - Kiln Forming Myths 4

More vent holes reduce the possibility of big bubbles


The position of the vent holes is more likely to prevent bubbles than simply the number.  A ball mould only requires one at the centre bottom.  A rectangular bowl with sharp curves needs the holes in the corners, not the centre.

The holes in a mould that are intended to allow air to escape should be at the places where the glass will last touch down on the mould.  When placing the holes, you need to think where the glass will last conform to the shape of the mould.

In a square or rectangle mould, the corners are the last places the glass will stretch into.  So the vent holes in the mould need to be there rather than in the centre, or along the straight edge of the bottom.  If it is a square slumper, it may be that there is no actual need for a vent hole, as the curve is gentle, but it is safest to have one at the centre. 

If the firing is too hot or too long in any but gently sloping moulds, large bubbles will be created even though there are adequate or multiple vent holes, as explained by the glass slipping down the mould and pushing the bottom up.


More information on big bubbles is available here.


All myths have an element of truth in them otherwise they would not persist.

They also persist because people listen to the “rules” rather than thinking about the principles and applying them.  It is when you understand the principles that you can successfully break the “rules”.