Showing posts with label Mechanical shock. Show all posts
Showing posts with label Mechanical shock. Show all posts

Wednesday 10 January 2024

Identification of Mechanical and Thermal Stress

The Identification of stress is important in investigating the causes of stress. We have well established clues to help us with our glass selection and alteration of our firing schedules. We can get more information about why the cold glass has broken from the scientific literature. The manufacturers of float glass and the installers of large panes investigate thoroughly the causes of breaks in glass that has been installed. 

One article - Breaking It Down, Why Did the Glass Break? by Timothy Bellovary from Vitro Architectural Glass - looks at mechanical and thermal stress and distinguishing between the two.  This post is quoted extracts from that article. [Text in square brackets are interpolations of mine].   Note that all the illustrations are from the article and are copyrighted.

Source: https://vcn.vitroglazings.com/technical-forumdiagnosing-glass-breakage

Identifying the break origin can provide hints about the following:

·         Mode of glass failure—Was it mechanical or thermally induced stress?

·         The stress or tension level at which the breakage occurred.

·         Other contributing factors—were there digs (deep, short scratches) resulting from glass-to-glass or glass-to-metal contact? Did a projectile hit the glass? Is there edge or surface damage?

 

To find the origin of a break, the first step is to assess its direction by inspecting the fracture lines… in the glass. These rib-shaped marks, distinguished by a wave-like pattern, begin at the break origin and radiate along break branches, and almost always project into the concave face of these lines.



Figure 1
Diagram of Fracture Line Direction


It’s often helpful to make a basic diagram (see Figure 1) of the fracture lines. … The origin of the break can be determined by:

·         Drawing arrows (indicating fracture line direction) pointing into the concave face of break wave markings in the glass edge.

·         Tracing point-to-tail of arrows back to the break origin.

 

Mechanical Stress

Low-stress tension breaks are experienced most frequently by residential window and IGU manufacturers. The origin of the break is typically at damaged areas of the edge or surfaces near the edge, such as digs, scratches or chips. In many cases, breakage from damaged glass occurs after the initial edge damage is incurred, such as during IGU fabrication, sashing operations, transportation, job-site handling or storage, or the installation process.

In Figure 2, the break origin is not 90 degrees to the edge of the glass, indicating a tension break caused by bending. Low-stress, mechanical tension breaks often occur from bending at less than 1,500 psi.

Figure 2

Low-Stress Mechanical Tension Break


High-stress tension breaks share one characteristic with low-stress tension breaks: The break origin is not 90 degrees to the edge of the glass, suggesting a tension break caused by bending. However, additional branching of the crack within two inches of the break origin (see Figure 3) indicates that the stress at breakage was likely higher than 1,500 psi.


Figure 3

High-Stress Mechanical Tension Break

 

Thermal Stress

Thermal stress breaks often originate at the edge of the glass and form virtually 90-degree angles to the edge and surface of the glass.

As with mechanical stress, there are two types of thermal stress breaks: low stress and high stress.

 


Figure 4

Low-Stress Thermal Break

Low-stress thermal breaks are often indicated by a single break line starting at the break origin point at or near the glass edge and propagating two inches or more before branching into more break lines (see Figure 4). Damaged glass edges are the most frequent cause of low-stress thermal breakage.

 

High-stress thermal breaks appear as a single break line starting at the break origin point at or near the glass edge and generally branching into additional breaks within two inches [50mm] of the origin. This indicates a breakage brought on by conditions that cause high thermal stress, such as severe outdoor shading on parts of the glazing; heating registers located between the glass and indoor shading devices; closed, light-colored drapes located close to the glass; or glazing in massive concrete, stone or similar framing.


Figure 5

High-Stress Thermal Break

Analysing the Break Origin

A reliable method for estimating the stress level of a break at failure is a mirror radius measurement. Radius dimensions are determined by crack propagation velocity characteristics.

A crack propagates itself through glass with increasing velocity as it moves further from the point of origin. If an object has sufficient energy to propagate a crack through the thickness of the glass, then a “spider web” pattern will form. ….

Near the point of origin, a smooth, mirror-like appearance on the fracture face indicates a low crack velocity. However, as velocity increases (due to higher tension stress), the fracture face takes on a frosted look; then, at the highest velocity, it assumes a ragged or hackled appearance. Mirror radii appear in various forms, depending on the stress level of the fracture.

Figure 6 shows break origins resulting from high tensile stresses, such as bending or thermal stress breaks.

Figure 6

High-Stress Mirror Radii
(R = Mirror radii)

 

Figure 7 represents the break origins of glass fracturing at low bending stresses. In this example, a smooth fracture face forms across the thickness of the substrate. When the breaking stress is low, the mirror radius is often radial and may extend deeply into the substrate.

Figure 7

Low-Stress Mirror Radii
(R = Mirror radii)

 

To identify what damaged the glass in the first place, four factors are examined during this analysis:

·         Impact

·         Inclusions

·         Thermal variance

·         Pressure differentials

Impact

Identifying the nature of the breakage pattern can determine whether a foreign object hit the glass and whether the impact was perpendicular or parallel.

Depending on the severity of the impact, the immediate area surrounding the break origin might be cracked, crushed or missing.

                 
Figure 9

High-Stress Mechanical Breakage

[This pattern of break is often exhibited when the separator fails or is insufficient to keep the glass from sticking to the ceramic support shelf.] …

Inclusions

Any undesirable material embedded in glass is considered an inclusion. ... [In general, kilnformers place inclusions within the glass and know the risks of breaks].

Thermal Variance

[This article relates to float glass installations, but the principle remains.] If the temperature difference across a [piece] of glass is great enough, the accompanying stresses can reach levels that cause breakage. … The combination of contact, surface damage and localized temperature gradients can greatly increase the likelihood of breakage.

Pressure Differentials

[This section applies mainly to Insulated Glazing Units. It points out that differences in altitude between the manufacturing and installation sites – in combination with temperature – can cause breaks. It is not of primary importance to most kilnforming, but something which should be considered when installing kilnformed glass in an IGU]

Conclusion

[Occasionally] glass breaks for no obvious reason. Whether it’s a one-off or part of a continuing pattern of incidents, glass breakage is inconvenient, potentially dangerous and costly. … Conducting “post-mortems” on glass breaks helps investigators identify the general reasons for each incident, including the type of failure that caused the break, and the potential original source of the damage. By using the techniques outlined in this article, [kilnformers] may be able to accurately identify the likely origin of such failures and … use that information to prevent future occurrences.

https://vcn.vitroglazings.com/technical-forumdiagnosing-glass-breakage

[An important element in identifying breaks in kilnforming that this article demonstrates is the difference in the angle of the break. A 90 degree angle to the surface indicates a thermal cause to the break. The more branching of the lines of breakage, the greater the stress. The branching breaks indicate there was significant temperature difference.

The breaks which are less than a right angle to the surface indicate a mechanical origin of the stress. This is usually the glass breaking at a weak point when subject to a bending stress.

If the point of origin of the stress can be identified as demonstrated in the article, it may help in determining causes. One of these causes might be hot or cold spots in the kiln.]