Showing posts with label Soak times. Show all posts
Showing posts with label Soak times. Show all posts

Tuesday, 14 October 2025

Observations on Some Suggestions about Annealing

There are writings from a teacher attempting to make glass fusing simple.  Unfortunately, glass physics and chemistry are very complicated.  Attempting to avoid these complications leads to failures and other difficulties as the practitioner progresses. 

Proper annealing is one of the fundamentals to achieving sound kilnforming results.  Some suggestions have been made by a widely followed person to “simplify” the understanding of the annealing process.  Discussion of the meaning and importance of annealing can be found in many places, including here.  

Annealing temperatures
It has been suggested that the annealing temperatures can be inferred from the CoE of the glass that is being used. Discussion of what CoE is and is not can be found here and here.


Annealing temperatures are not directly related to the expansion coefficient (CoE) of the glass.  This can be shown from the published annealing temperatures for different glasses organised by presumed CoE:
·        “CoE96”: Wisssmach 96 - anneal at 482°C;  Oceanside - anneal at 515°C
·        “COE94”: Artista - anneal at 535°C
·        “CoE 93”: Kokomo - anneal between 507°C and 477°C – average 492°C
·        “CoE 90”: Bullseye - anneal at 482°C; Wissmach90 - anneal at 482°C; Uroboros FX90 - anneal at 525°C
·        “CoE 83”:
o   Pilkington (UK) float - anneal at 540°C;
o   typical USA float - anneal at 548°C;
o   Typical Australian float - anneal between 505°C and 525°C, average 515°C

This shows there is no direct relationship between CoE and annealing temperature.  Do not be tempted to use a CoE number to indicate an annealing temperature.  Go to the manufacturer’s web site to get the correct information.


Temperature equalisation soak
Annealing for any glass can occur over a range of temperatures.  The annealing point is the temperature at which the glass can most quickly be annealed.  However, the glass cannot be annealed if it is not all at the same temperature throughout the substance of the glass.  It has been shown through research done at the Bullseye Glass Company that a temperature difference of more than 5°C will leave stress within the glass piece. To ensure good annealing, adequate time must be given to the temperature equalisation process (annealing). 

From the Bullseye research the following times are required for an adequate anneal soak:
6mm /   1/4"            60 minutes
[9mm /  3/8"           90 minutes]
12mm  / 1/2"          120 minutes
[15mm  /   5/8"       150 minutes]
19mm   / 3/4"         180 minutes

[ ] = interpolated from the Bullseye chart for annealing thick slabs


Anneal Cooling
There are suggestions that a “second anneal” can be used on important pieces.  Other than observing that all pieces are important to the maker, the suggestion should be investigated.  On looking into the idea, it is essentially a second soak at 425°C, which is slightly below the strain point, rather than controlled cool from the anneal soak temperature.

It is reported that the Corning Museum of Glass considers 450°C as the lower strain point – the temperature below which no further relief of strain is possible.  This means that any secondary soak must occur above 450°C rather than the suggested 425°C. Such a soak is unnecessary if the appropriate cooling rates are used. 

Cooling Rate
Except in special circumstances, the cooling rate needs to be controlled as part of the annealing process.  Soaking the glass at the anneal is not the completion of the annealing.  Most practitioners follow the practice of choosing a slow rate of cooling from the annealing soak to some point below the strain point rather than a rapid one with a soak at the strain point temperature.

Annealing is not just the soak time (which is there to equalise the temperature), it is about the rate of the annealing cool too. The rate at which you cool is dependent on the thickness of the glass piece and whether it is all of one thickness or of variable thicknesses.

Even thickness
                                         Cooling rate
Dimension      time (mins)     to 427°C to 371°C
6mm              60                 83°C       150°C
9mm              90                 69°C       125°C
12mm            120                55°C       99°C
15mm            150                37°C       63°C
19mm            180                25°C       45°C

                                        Cooling rate
Dimension      time (mins)     to 800°F   to 700°F
0.25"              60                 150°F       270°F
0.375"            90                 124°F       225°F
0.5"               120                100°F       178°F
0.675"           150                67°F         114°F
0.75"             180                45°F         81°F

Tack fused/ uneven thickness
If your piece is tack fused, you need to treat the annealing rate and soak as though it were twice the actual total thickness. This gives the following times and rates:

Tack fused
Dimension (mm)                                Cooling rate
Actual     Calculated       time (mins)    to 427°C   to 371°C
6            12                 120                55°C       99°C
9            18                 150                25°C       45°C
12          25                 180                15°C       27°C
15          30                 300                9°C         18°C
18          38                 360                6.7°C       12°C


Dimension (inches)                                Cooling rate
Actual     Calculated       time (mins)    to 800°F   to 700°F
0.25          0.5                 120                100°F       180°F
0.375        0.75               150                45°F         81°F
0.5            1.0                180                27°F          497°F
0.675        1.25               300                16°F         36°F
0.75          1.5                360                12°F          22°F


Contour fusing requires firing as though the piece is 1.5 times thicker.  Sharp tack or laminating requires 2.5 times the the actual thickness.

Fusing on the floor of the kiln
There is a further possible complication if you are doing your fusing on the kiln floor, or a shelf resting on the floor of the kiln.  In this case you need to use the times and rates for glass that is at least 3mm thicker than the piece actually is. 

Thus, a flat 6mm piece on a shelf on the floor would use the times and rates for 9mm: anneal soak for 90 minutes, anneal cool at 69°C to 427°C and then at 124°C to 371°C.  It would be safest if you continued to control the cooling to room temperature at no more than 400°C per hour.

But if it were a tack fused piece of a total of 6mm you would use the times and rates for 18mm.  This is using the rates for twice the total thickness plus the additional 3mm for being on the base of the kiln.  This gives the times and rates as being an anneal soak of 360 minutes and cooling rates of 7°C to 427°C and 12°C to 370, followed by 40°C per hour to room temperature.  Any quicker rates should be tested for residual stress before use.


Source for the annealing and cooling of fused glass
These times and rates are based on the table derived from Bullseye research, which is published and available on the Bullseye site.   It is applicable to all fusing glass with adjustments for differing annealing soak temperatures.


Annealing over multiple firings

It has been recommended by a widely followed person that the annealing soak should be extended each time subsequent to the first firing.  I am uncertain about the reasoning behind this suggestion. But the reasons for discounting it are related to adequate annealing and what is done between firings.

If the annealing is adequate for the first firing, it will be adequate for subsequent firings unless you have made significant alterations to the piece.  If you have added another layer to a full fused piece, for example and are using a tack fuse, you will need to anneal for longer, because the style and thickness have been altered.  Not because it is a second firing.  If you are slumping a fired piece, the annealing does not need to be any different than the original firing.

The only time the annealing needs to be altered is when you have significantly changed the thickness of the piece, or the style of fusing (mainly tacking additional items to the full fused piece).  This is when you need to look at the schedules you are planning to use to ensure your heat up is slow enough, that your annealing soak is long enough, and the cool slow enough for the altered conditions.


Determining the annealing point of unknown glass

You don’t have to guess at the annealing temperature for an unknown glass.  You can test for it.  It is known as the slump point test.

This test gives the softening point of the glass and from that the annealing point can be calculated.  This test removes the guess work from choosing a temperature at which to perform the anneal soak. The anneal temperature is important to the result of the firing.  This alone makes this test to give certainty about the annealing temperature worthwhile.

You can anneal soak at the calculated temperature, or at 30°C below it to reduce the anneal cool time.  This is because the annealing can occur over a range of temperatures.  The annealing occurs slowly at the top and bottom of the range. But is at least risk of "fixing in" the stress of an uneven distribution of temperature during the cool when the annealing is done at the lower end of the range.



Do not be fooled into thinking that CoE determines annealing temperatures.  Use published tables, especially the Bullseye table Annealing for Thick Slabs to determine soak times and cooling rates.  Use the standard test for determining the softening and annealing points of unknown glasses.


Further information is available in the ebook Low Temperature Kiln Forming and in Annealing Concepts Principles and Practice 

Revised 14.10.25

Wednesday, 19 March 2025

Bubbles on Single Layer Fusing

“I'm making 3mm French Vanilla sconce covers; …

·        [initially they were] fine, but now 1.5" bubbles form during the full fuse.

·        I pop the bubbles and fill the holes with frit and refire,

·        [The]… edges draw in and distort the design…

·        The shelf is flat,

·        I fire on Bullseye paper, and

·        the 13.5 hour long firing schedule [in F] is:

200 to 1150, hold 30 minutes.

50 to 1225, hold 30 minutes.

300 to 1490, hold 30 minutes.

9999 to 990, hold 60 minutes.

100 to 750, hold 1 minute.

Does anyone know what I can do to avoid the large bubbles? 



A critique of the schedule. 

 This is for a single sheet of 3mm glass, so the hold at 621˚C/1150˚F is unnecessary as is the slow rise to and hold at 663˚C/1225˚F, because it is a single sheet and does not need the traditional bubble squeeze. 


 The hold of 30 minutes at 810˚C/1490˚F is excessive. 

·        The temperature may be too high.

·        Ten minutes at top temperature is sufficient in most cases. 

·        A soak of 1 minute would be enough. 

·        The anneal soak at 990˚F is most probably a misprint for                          516˚C/960˚F. 

·        The anneal soak is longer than the half hour necessary, but not a             bubble creating problem.

 It means the schedule could have been:

111˚C/200˚F to 796˚C/1465˚F for 5 minutes

AFAP to 516˚C/960˚F for 30 minutes

83˚C/150F˚ to 370F˚/700F˚, 0 minutes

Off

 

Different firing strategies are possible.

  •         Reduce the time at top temperature to no more than 10 minutes. 
  •         Reduce top temperature by 55˚C/100˚F or more and extend the soak to 20 minutes, if necessary.  Peek frequently to see when the kiln work is complete.
  •         Fire on fibre paper covered with Thinfire to allow air out from under the glass.

These strategies can be mixed as desired, and the reasoning for the strategies is:

  • Excessive time at the top temperature allows the glass to thin as it migrates to form thicker areas/edges. This makes the glass too thin to resist the air pressure from below.
  • Reducing the top temperature will increase the viscosity, so              resisting the migration of the glass, and maintain the original            thickness. 
  • Also, single layers are prone to dog boning, but there are ways of reducing it.

Ways to reduce the risk of bubbles appearing in general are:
  •    Reduce the time at the top temperature,
  •    Reduce the top temperature,
  •    Provide ways for the expanding air to migrate from under the glass.

Wednesday, 5 March 2025

Pressing glass


I have been looking for a different way than flows or melts to mix colours and thought glass pressing might be a promising way to achieve what I wanted.


Weight vs Temperature

I conducted some experiments attempting to thin 1.25 kg/2.75 pounds of glass to 3-4mm.  One and then two 40x40cmx15mm thick shelves were placed on top of the glass cullet with 3mm spacers at the corners. The glass was fired at 220ºC/396ºF to 825ºC/1517ºF and initially held for 30 minutes, later extended to 90 minutes.  The thickness stubbornly remained between 5 and 7mm. 

A few other attempts with different times and temperatures gave inconsistent results.  Perhaps the uneven piling of cullet had an influence on the outcomes, but I was still looking for a flow and mixing of colours different to that obtained by melts.

Other experiments were being conducted in parallel, relating to viscosity. These indicated that glass became thinner than 6-7mm at higher temperatures without pressing.  These experiments lead me to think there are four elements controllable by kilnformers in pressing: size, weight, time, temperature.

The same weight of press with the same temperature and time will make small amounts thinner than large amounts, and this is not surprising.  More time with the same temperature, weight, and amount allows some slight decrease in thickness. 

Higher temperatures with the same weight, and time will allow thinner pressings of the same amount of glass.   Viscosity decreases with temperature, so higher temperatures make glass easier to thin.

More weight is required get the same thickness when pressing a greater volume of glass.  Of course, more time and temperature can be added to increase the effect of the weight.

However, the main factor in pressing large amounts of glass is higher temperatures, which results in reducing the viscosity and the resistance to thinning. 

 

Annealing and Cooling

An important aspect of pressing is the annealing requirements.  It is sensible to anneal for a longer time than normal for thick glass, because of the heat retention of the pressing weights. 



This image shows the stress in an 8mm/0.3” (or 5/16”) after annealing as for 16mm/0.63” (5/8”).  There is widespread low level stress with 30mm thick pressing weight.

Indications are that extending the annealing to at least 3 times the target thickness is a minimum annealing soak requirement.  Alternatively, if it is possible to remove some, or all, of the weight from the glass at the beginning of the anneal soak, the annealing time can be reduced.

 

Veiling

The stress picture above shows there is visual element too.  This veiling is most apparent in clear glass, and less obvious in coloured and opalescent glass.  Small volume stacks, which are pressed thin will exhibit less of the veiling.

 

 

Four factors that kilnformers can control in pressing glass to less than 6mm are weight, size, time, and temperature.  The main one is temperature.

Sunday, 23 February 2025

Rapid Ramp Rates with Soaks


I have seen many schedules with initial rates of advance interrupted by soaks.  These kinds of schedules that are written something like this:

250°C/450°F to 200°C/482°F, soak for 10 (or 20 or 30) minutes
250°C/450°F to 500°C/933°F, soak for 10 (or 20 or 30) minutes
300°C/540°F to 595°C/1100°F, soak for 10 (or 20 or 30) minutes
300°C/540°F to 677°C/1250°F, soak for 10 (or 20 or 30) minutes
330°C/600°F to working temperature (1450°, 1500° etc.)

When I have asked, I’m usually told that these are catch up pauses to allow all the glass to have an even temperature.  There are occasions when that may be a good idea, but I will come to those later.  For normal fusing, draping and slumping these soaks are not needed.

To understand why, needs a little information on the characteristics of glass.  Glass is a good insulator, and therefore a poor transmitter of heat.  Glass behaves better with a moderate steady input of heat to ensure it is distributed evenly throughout the glass.  To advance the temperature quickly during the initial heat up stages where the glass is brittle risks thermal shock. 

The soaks at intervals do not protect against a too rapid increase in temperature.  It is the rate of heat input that causes thermal shock.  Rapid heat inputs cause uneven temperatures through and across the glass.  When these temperatures are more than 5°C different across the glass, stress is not relieved.  As the temperature differential increases, so does the stress until the glass is not strong enough to contain those stresses and breaks.  At higher temperatures these stresses do not exist as the glass is less viscous.

If, as is common and illustrated in the schedule above, you advance at the same rate on both sides of the soak, the soak really does not serve any purpose – other than to make writing schedules more complicated.  If the glass survived the rate of heat input between the soaks, it will survive without the soaks.

But you may wish to be a little more careful. The same heating effect can be achieved by slowing the rate of advance.  Just consider the time used in the soak and then slow the rate by the appropriate amount.  Take the example above using 30-minute soaks:

250°C/450°F to 200°C/482°F, soak for 30 minutes
250°C/450°F to 500°C/933°F, soak for 30 minutes

This part of the schedule will take three hours.  You can achieve the same heat work by going at 167°C/300°F per hour to 500°C/933°F.  This will add the heat to the glass in a steady manner and the result will be rather like the hare and tortoise.  If you have to pause periodically because you have gone too quickly, you can reach the same end point by steady but slower input of heat without the pauses.

But, you may argue, “the periodic soaks on the way up have always worked for me.”  As you work with thicker than 6mm glass, this “quick heat, soak; quick heat, soak” cycle will not continue to work.  Each layer insulates the lower layer from the heat above.  As the number of layers increase, the greater the risk of thermal shock. Enough time needs to be given for the heat to gradually penetrate from the top to the bottom layer and across the whole area in a steady manner.

To be safest in the initial rate of advance, you should put heat into the glass in a moderate, controlled fashion.  This means a steady input of heat with no quick changes in temperature.  How do you calculate that rate?  Contrary as it may seem, start by writing out your cooling phases of the schedule.  The cooling rate to room temperature is the safe cooling rate for the final and now thicker piece.  If that final cool rate is 300°C/540°F, the appropriate heat up rate is one third of that or 100°C/180°F. 

This “one third speed” rate of advance will allow the heat to penetrate the layers in an even manner during the brittle phase of the glass.  This rate needs to be maintained until the upper end of the annealing range is passed.  This is normally around 55°C/100°F above the annealing point.

Then you can begin to write the rate of advance portion of your schedule.  It could be something like:

100°C/180°F to 540°C, no soak
225°C/405°F to bubble squeeze, soak
330°C/600°F to working temperature, soak 10 minutes
Proceed to cool segments 

I like simple schedules, so I normally stick to one rate of advance all the way to the bubble squeeze.  This could be at the softening point of the glass or start at 50°C below with a one hour rise to the softening point with a 30-minute soak there before proceeding more quickly to the working temperature.

Exceptions.

I did say I would come back to an exception about soaks on the first ramp rates  segment of the schedules.  When the glass is supported – usually in a drape – with a lot of the glass unsupported you do need to have soaks.  The kind of suspension is when draping over a cylinder or doing a handkerchief drop.  This is where a small portion of the glass is supported by a point or a long line while the rest of the glass is suspended in the air.  It also occurs when supported by steel or thick ceramic.

The soaks are not to equalise the temperature in the glass primarily.  They are to equalise the temperature between the supports and the glass.  A thick ceramic form supporting glass takes longer to heat up than the glass.  The steel of a cocktail shaker takes the heat away from the glass as it heats faster. 

The second element in this may already be obvious.  The glass in the air on a ceramic mould can heat faster than that on the mould.  The glass on a steel mould can heat faster over the steel than the suspended glass.  Both these cases mean that you need to be careful with the temperature rises.

Now, according to my arguments above, you should be able to slow the rate of advance enough to avoid breakage.  However, my experience has shown that periodic soaks in combination with gradual increases in the rates of advance are important, because it is more successful. 

An example of my rates of advance for 6mm glass supported on a steel cylinder is:
100°C/180°F to 100°C/212°F, soak 20 minutes
125°C/225°F to 200°C/392°F, soak 20 minutes
150°C/270°F to 400°C/753°F, soak 20 minutes
200°C/360°F to draping temperature

Call me inconsistent, but this has proved to be more effective than dramatically slowing the rates of advance.  This exception does not apply to slumps where the glass is supported all around by the edge of a circular or oval mould, or where it is supported at the corners of a rectangular or square one.


Another exception is where you have a lot of moisture in a mould, for example. You need to soak just under the boiling point of water to dry the mould or drive out water from other elements of your work before proceeding.  This also applies to situations where you need a burn out, of for example vegetable matter at around 500°C/933°F for several hours.

In both these cases, these are about the materials holding or contained in the glass, rather than the glass itself.

Revised 23.2.25

Wednesday, 19 February 2025

Time and Temperature

credit: timeanddate.com


Credit: Shutterstock


“What are the pros and cons on turning up the max temperature slightly Vs. a longer hold time”? Lea Madsen

This is a difficult question to answer, because there are variables such as

the temperature range,

the ramp rates, and soaks,

the forces acting upon the glass at a given temperature, 

the process,

the desired outcome of the firing,

etc. 

When talking about temperature vs. time, it is heat work that we are considering.  In many processes time and temperature are interchangeable, although the temperature range is important too.  This is a brief discussion of heat work in various processes.

Slumps

Slumping temperature is generally in the range of 620˚C-680˚C/1150˚F -1255˚F *, which is below the devitrification range.  This allows the exchange of time for temperature without risk, allowing more time rather than more temperature.  Higher temperatures cause more marking from the mould since the bottom of the glass is softer than at lower ones.  Lower temperatures give higher viscosity, so the glass is stiffer, resisting marks.

Low temperature fuses

Sharp tack fusing, freeze and fuse, some pate de verre processes, and sintering occur in the 650˚C -720˚C /1150˚F - 1320˚F range, risking devitrification only at the upper end of this range.  Extending the time rather than the temperature is important to maintain detail in these processes.  Higher temperatures will smooth the surface, risking loss of detail.  

Rounded tack processes (720˚C – 760˚C /1320˚F - 1400˚F)

These are within the devitrification range making the choice between time and temperature a balance of risks.  In my experience, it takes about an hour for visible devitrification to develop.  This means that you can extend the time, if the total time between the end of the bubble squeeze and the working temperature, including the hold time, is less than an hour.  It has the advantage of a more secure attachment between the pieces of glass, without altering the surface much. 

But if extending the soak time increases the time in the devitrification zone to be more than an hour, it is advisable to increase the temperature, rather than time.  Devitrification develops in the presence of air, so reducing the time in that range reduces the risk of devitrification developing.  The glass is moving during rapid ramp rates, reducing the chance of devitrification.

Drops

This includes drapes, and other free forming processes.  Kilnformers will be observing the progress of these firings, making it easier to balance temperature and time.  There are already long holds scheduled for the processes, so it is a matter of getting the right temperature.  If, after half an hour at the scheduled top temperature, the glass has not moved much, it is time to increase the temperature by, say 10˚C/18˚F and observe after another half hour, repeating the temperature increase if necessary.   Be aware of thinning the glass at the shoulder by setting a high temperature.  Free drops may take as much as 6 – 8 hours, so patience and observation are important to get good results.

Full fuse

At full fuse try to get the work done in 10 minutes to avoid complications with devitrification.  So, increasing the temperature rather than the length of the soak seems best.

Flows

Whether frit stretching, making pattern bars, pressing, etc., low viscosity is important.  Viscosity is closely related to temperature, so increasing the temperature is the better choice.  Increasing time without increasing temperature does not change viscosity much.

Casting

Extending time at top temperature seems best for open face casting, as the temperature is already high.  A slow ramp rate to that top temperature may make adding time unnecessary, because the heat work will be increased by the slow rise.  Experience has shown that a rate of 200˚C/360˚F is enough to avoid devitrification.  With enclosed castings devitrification is not such a risk, so time can be added without concern.

 

Observation

In all these processes it is advisable to observe the progress of the firing by quick peeks to determine the effective combination of temperature and time.  Also note that heat work is cumulative, making for changes in profile with repeated firings. 

 

* The softening point of float glass is around 720°C/1328°F, so the slumping range is about 700°C/1292° to 750°C/1382°F.