Showing posts with label Cooling. Show all posts
Showing posts with label Cooling. Show all posts

Tuesday, 14 October 2025

Observations on Some Suggestions about Annealing

There are writings from a teacher attempting to make glass fusing simple.  Unfortunately, glass physics and chemistry are very complicated.  Attempting to avoid these complications leads to failures and other difficulties as the practitioner progresses. 

Proper annealing is one of the fundamentals to achieving sound kilnforming results.  Some suggestions have been made by a widely followed person to “simplify” the understanding of the annealing process.  Discussion of the meaning and importance of annealing can be found in many places, including here.  

Annealing temperatures
It has been suggested that the annealing temperatures can be inferred from the CoE of the glass that is being used. Discussion of what CoE is and is not can be found here and here.


Annealing temperatures are not directly related to the expansion coefficient (CoE) of the glass.  This can be shown from the published annealing temperatures for different glasses organised by presumed CoE:
·        “CoE96”: Wisssmach 96 - anneal at 482°C;  Oceanside - anneal at 515°C
·        “COE94”: Artista - anneal at 535°C
·        “CoE 93”: Kokomo - anneal between 507°C and 477°C – average 492°C
·        “CoE 90”: Bullseye - anneal at 482°C; Wissmach90 - anneal at 482°C; Uroboros FX90 - anneal at 525°C
·        “CoE 83”:
o   Pilkington (UK) float - anneal at 540°C;
o   typical USA float - anneal at 548°C;
o   Typical Australian float - anneal between 505°C and 525°C, average 515°C

This shows there is no direct relationship between CoE and annealing temperature.  Do not be tempted to use a CoE number to indicate an annealing temperature.  Go to the manufacturer’s web site to get the correct information.


Temperature equalisation soak
Annealing for any glass can occur over a range of temperatures.  The annealing point is the temperature at which the glass can most quickly be annealed.  However, the glass cannot be annealed if it is not all at the same temperature throughout the substance of the glass.  It has been shown through research done at the Bullseye Glass Company that a temperature difference of more than 5°C will leave stress within the glass piece. To ensure good annealing, adequate time must be given to the temperature equalisation process (annealing). 

From the Bullseye research the following times are required for an adequate anneal soak:
6mm /   1/4"            60 minutes
[9mm /  3/8"           90 minutes]
12mm  / 1/2"          120 minutes
[15mm  /   5/8"       150 minutes]
19mm   / 3/4"         180 minutes

[ ] = interpolated from the Bullseye chart for annealing thick slabs


Anneal Cooling
There are suggestions that a “second anneal” can be used on important pieces.  Other than observing that all pieces are important to the maker, the suggestion should be investigated.  On looking into the idea, it is essentially a second soak at 425°C, which is slightly below the strain point, rather than controlled cool from the anneal soak temperature.

It is reported that the Corning Museum of Glass considers 450°C as the lower strain point – the temperature below which no further relief of strain is possible.  This means that any secondary soak must occur above 450°C rather than the suggested 425°C. Such a soak is unnecessary if the appropriate cooling rates are used. 

Cooling Rate
Except in special circumstances, the cooling rate needs to be controlled as part of the annealing process.  Soaking the glass at the anneal is not the completion of the annealing.  Most practitioners follow the practice of choosing a slow rate of cooling from the annealing soak to some point below the strain point rather than a rapid one with a soak at the strain point temperature.

Annealing is not just the soak time (which is there to equalise the temperature), it is about the rate of the annealing cool too. The rate at which you cool is dependent on the thickness of the glass piece and whether it is all of one thickness or of variable thicknesses.

Even thickness
                                         Cooling rate
Dimension      time (mins)     to 427°C to 371°C
6mm              60                 83°C       150°C
9mm              90                 69°C       125°C
12mm            120                55°C       99°C
15mm            150                37°C       63°C
19mm            180                25°C       45°C

                                        Cooling rate
Dimension      time (mins)     to 800°F   to 700°F
0.25"              60                 150°F       270°F
0.375"            90                 124°F       225°F
0.5"               120                100°F       178°F
0.675"           150                67°F         114°F
0.75"             180                45°F         81°F

Tack fused/ uneven thickness
If your piece is tack fused, you need to treat the annealing rate and soak as though it were twice the actual total thickness. This gives the following times and rates:

Tack fused
Dimension (mm)                                Cooling rate
Actual     Calculated       time (mins)    to 427°C   to 371°C
6            12                 120                55°C       99°C
9            18                 150                25°C       45°C
12          25                 180                15°C       27°C
15          30                 300                9°C         18°C
18          38                 360                6.7°C       12°C


Dimension (inches)                                Cooling rate
Actual     Calculated       time (mins)    to 800°F   to 700°F
0.25          0.5                 120                100°F       180°F
0.375        0.75               150                45°F         81°F
0.5            1.0                180                27°F          497°F
0.675        1.25               300                16°F         36°F
0.75          1.5                360                12°F          22°F


Contour fusing requires firing as though the piece is 1.5 times thicker.  Sharp tack or laminating requires 2.5 times the the actual thickness.

Fusing on the floor of the kiln
There is a further possible complication if you are doing your fusing on the kiln floor, or a shelf resting on the floor of the kiln.  In this case you need to use the times and rates for glass that is at least 3mm thicker than the piece actually is. 

Thus, a flat 6mm piece on a shelf on the floor would use the times and rates for 9mm: anneal soak for 90 minutes, anneal cool at 69°C to 427°C and then at 124°C to 371°C.  It would be safest if you continued to control the cooling to room temperature at no more than 400°C per hour.

But if it were a tack fused piece of a total of 6mm you would use the times and rates for 18mm.  This is using the rates for twice the total thickness plus the additional 3mm for being on the base of the kiln.  This gives the times and rates as being an anneal soak of 360 minutes and cooling rates of 7°C to 427°C and 12°C to 370, followed by 40°C per hour to room temperature.  Any quicker rates should be tested for residual stress before use.


Source for the annealing and cooling of fused glass
These times and rates are based on the table derived from Bullseye research, which is published and available on the Bullseye site.   It is applicable to all fusing glass with adjustments for differing annealing soak temperatures.


Annealing over multiple firings

It has been recommended by a widely followed person that the annealing soak should be extended each time subsequent to the first firing.  I am uncertain about the reasoning behind this suggestion. But the reasons for discounting it are related to adequate annealing and what is done between firings.

If the annealing is adequate for the first firing, it will be adequate for subsequent firings unless you have made significant alterations to the piece.  If you have added another layer to a full fused piece, for example and are using a tack fuse, you will need to anneal for longer, because the style and thickness have been altered.  Not because it is a second firing.  If you are slumping a fired piece, the annealing does not need to be any different than the original firing.

The only time the annealing needs to be altered is when you have significantly changed the thickness of the piece, or the style of fusing (mainly tacking additional items to the full fused piece).  This is when you need to look at the schedules you are planning to use to ensure your heat up is slow enough, that your annealing soak is long enough, and the cool slow enough for the altered conditions.


Determining the annealing point of unknown glass

You don’t have to guess at the annealing temperature for an unknown glass.  You can test for it.  It is known as the slump point test.

This test gives the softening point of the glass and from that the annealing point can be calculated.  This test removes the guess work from choosing a temperature at which to perform the anneal soak. The anneal temperature is important to the result of the firing.  This alone makes this test to give certainty about the annealing temperature worthwhile.

You can anneal soak at the calculated temperature, or at 30°C below it to reduce the anneal cool time.  This is because the annealing can occur over a range of temperatures.  The annealing occurs slowly at the top and bottom of the range. But is at least risk of "fixing in" the stress of an uneven distribution of temperature during the cool when the annealing is done at the lower end of the range.



Do not be fooled into thinking that CoE determines annealing temperatures.  Use published tables, especially the Bullseye table Annealing for Thick Slabs to determine soak times and cooling rates.  Use the standard test for determining the softening and annealing points of unknown glasses.


Further information is available in the ebook Low Temperature Kiln Forming and in Annealing Concepts Principles and Practice 

Revised 14.10.25

Wednesday, 8 October 2025

Annealing a Stressed Piece

An stress test strip and annealing witness between polarised filters.

If an unbroken fired piece shows stress that is known not to be from incompatibility, it is possible to fire and anneal again to relieve the stress.  If the stress results from incompatibilities, annealing again will not change the compatibility.  The process for stress testing is here

Conditions for doing this re-firing are:

  • Slower heat up rates than usual for this thickness and profile are required. The glass is more than usually fragile and needs gradual heating. This avoids creating additional stress that may cause a break.

  • Take the temperature up to the lower end of slumping temperature range - say 600 - 620C (1100 - 1150F) - and soak for 10 – 30 minutes depending on profile and thickness.  This ensures any existing stress is relieved and the glass is ready for the annealing.

  • Reduce the temperature as fast as possible to the existing or new annealing temperature.

  • Anneal for longer than previously. This can be for a greater thicknesses than the thickness and profile used for the stressed piece.  Most importantly, the anneal soak for the combination of profile and thickness needs to be followed.

  • My experimentation has shown that the profile determines the additional amount of thickness that needs to be allowed for a sound anneal is as follows:

    • Full flat fuse - fire for the thickness (i.e. times 1)
    • Contour fuse -  fire for 1.5 times the thickest part
    • Rounded tack fuse - fire for 2 times the thickest part
    • Sharp tack/sinter - fire for 2.5 times the thickest part.
  • Use the cool rates related to the anneal soak time. These are available from the Bullseye site for Celsius and Fahrenheit.  Too rapid a cool can induce temporary stress from differential contraction of the glass that is great enough to cause breaks, so follow the rates determined for this thickness and profile. 

  • These rates are scientifically determined for all glass and especially for fusing glass and are inversely related to the anneal soak.  That means the longer the anneal soak, the slower the cooling rates need to be, and directly related to the soak length.  It does not matter which manufacturer's glass is being used, all the target times and temperatures should be followed, except the annealing temperature.


More information is available in my e-book Annealing Concepts, Principles, and Practice available from BullseyeEtsy, and stephen.richard43@gmail.com

Wednesday, 3 September 2025

Shotgun Annealing

 Shotgun annealing is chosen when the annealing temperature is unknown or uncertain. The name comes from the characteristic spread of the shot pellets to include the target.



To follow this process, pick highest relevant anneal temperature. We know soda lime glass has a range from about 540°C/1004°F to 470°C/878°F. Unless you are firing float glass (which anneals between 540°C/1004°F and 520°C/968°F), you can start the anneal cycle at 520°C/968°F and continue it to 470°C/878°F (a 50°C range). The rate to be used is determined by the amount of time required to anneal the piece according to thickness.

To be safe, a shotgun anneal will need double the time to go through the chosen range that a normal anneal soak requires.

  • A 6mm/0.25” full fused piece would normally need an hour soak. So the shotgun anneal rate would be 25C/45F per hour over a 50°C/90°F range.
  • A 12mm/0.5” full fused piece would normally need a two hour soak. This implies a rate of one quarter of the range or a cool rate of 12°C/22°F over the range.
  • A 6mm/0.25” tack fused piece would need to be fired for twice its thickness, so as for 12mm/0.5”.

Annealing times for different profiles and thicknesses are given in this blog post:  and in this ebook.


If the glass is really unknown or older than fusing glass, a wider shotgun anneal range should be used. This gives a temperature range of 540°C/1004°F and goes to 470°C/878°F, or a range of 70°C/126°F. There is still a requirement for the shotgun process to be double the normal anneal soak.

  • So for a 6mm/0.25” full fused piece two hours are required to go through the range, or 35°C/63°F per hour.
  • A 12mm/0.5” full fused piece and a 6mm/0.25” tack fused piece will need a rate that takes 4 hours to go through the range, or 18°C/32°F per hour.


Once the slow fall of temperature through the range is complete, there should be a one hour soak to ensure the temperature has been equalised throughout the reduction in temperatures. This is applicable to pieces 12mm/0.5” thick. Thicker pieces need a longer soak at this point.


The final part of the anneal is cooling at a rate appropriate for the thickness and profile. E.g.:

  • A 6mm/0.25” full fused piece would be cooled at 83°C/150°F to 427°C/800°F, and then at 150°C/270°F to 370°C/700°F or lower.
  • A 12mm/0.5” full fused piece needs a two hour soak, so the cooling rates are determined by that, i.e., 55°C/99°F per hour to 427°C/800°F and then at 99°C/178°F per hour to 370°C/700°F or lower.



There is an alternative process which is used to determine the annealing temperature of an unknown glass. Once the anneal temperature is determined for a glass, there is no need for a shotgun anneal process. This is known as the slump point test


Much more on the principles and practices of annealing can be found in my e-book. Annealing Concepts, Principles and Practice from Bullseye, Etsy and stephen.richard43@gmail.com


Wednesday, 29 January 2025

Over Annealing

 I hear the comment "you can't over anneal" all the time. Is it true?

My response to this may be controversial, and I do expect there will be some dispute with aspects of what follows.  My view of the statement “you can’t over anneal” is that it results from a lazy approach to thinking about the process.

The short answer is, in my view “yes, you can over anneal”.

  • ·         Lengthy anneal soaks can induce stress in certain circumstances. More later.
  • ·         Excessive annealing soaks waste time and money.
  • ·         Annealing is more than the soak.  It is a combination of equalisation of the heat within the glass (not just temperature) and the gradual cooling of the glass to below the lower strain point to ensure the glass does not incorporate differences of temperature of plus or minus 5°C.

There is both tradition and research to assist in determining the length of the anneal soak.  The tradition seems to embrace 30 minutes anneal soak for each 3mm-layer of glass. The research has been done by Bullseye and they have developed a table to assist in accurately determining annealing soaks for thick glass. 

It informs users of the relationship between thickness and annealing soaks and cooling.  The table starts at 6mm/0.25" thick, and goes up to 200mm/8" thick.  The annealing soak temperature used needs to be altered for glass other than Bullseye, but the soaks, rates, and temperatures remain valid for all fusing glasses. Use the research, rather than tradition.

Other considerations include the nature of the kiln.  If your kiln has significant temperature differentials across the shelf, long annealing soaks will incorporate those differences during the annealing cool and result in a stressed piece. You do know the temperature distribution within your kiln, don’t you?  This Tech Note #1 from Bullseye will give you the information to test for the temperature distribution. Using this information will enable you to avoid the cool spots when placing your pieces and utilise the areas where the heat is even.

Economy is another reason that it is possible to over anneal.  Soaking at the annealing temperature uses a significant proportion of the electricity consumed in a firing.  This means an overly long temperature equalisation soak will use more electricity than necessary.  It also uses more kiln time than necessary, by delaying the anneal cooling and the following natural cooling rate of the kiln.


It is possible to under anneal, of course.
You need to learn about the effects of your project on annealing requirements, because it is possible to under anneal.  The research on annealing is based glass of uniform thickness. The most popular style of kilnforming appears to be tack fusing of one degree or another.  This is unfortunate for the novice, as it is the most difficult of styles to anneal adequately. There are a lot of factors to consider when setting the annealing schedule for tack fusing. 

I feel this is the origin of “can’t over anneal” thinking.  Instead of thinking about the specific annealing difficulties, many seem to just add more time in a generally random manner.  The post on tack fusing considerations (the link above) is designed to help in thinking about the requirements of the lay-up of your piece. The cumulation of factors can easily triple the annealing soak time and slow the rates by three times. 


What is the anneal?
Another problem is that most often annealing is thought of as merely a soak at the annealing point of the glass.  It is much more than that.  The annealing point is usually the temperature at which the heat within the glass is equalised in preparation for the anneal cool.  This is because the annealing temperature is that at which the glass will most quickly anneal.  Since the anneal is temperature sensitive, the equalisation of the temperatures within the glass will be most successful at getting a good anneal throughout the cool.

For two-layer flat fused items, the annealing point can be used as the heat equalisation temperature.  The soak is to get the glass within 5°C/10°F throughout the piece.  The annealing, especially with thicker or more difficult pieces, is done closer to the lower strain point. The reasons for this is to save time in the annealing cool, it is easier to maintain the small difference in temperature, and it has been shown to produce a more dense (therefore stronger) glass.  If you look at the Bullseye annealing chart, you will see how slowly thick pieces need to be cooled, so starting 35°C/ below the annealing point can save many hours of cooling.

Once the glass has equalised in temperature, the object is to cool the glass at a rate that ensures the internal temperatures do not vary more than plus or minus 5°C/10°F across and through the piece.  The rate can increase by 1.8 times the initial cool rate after the lower strain point has been reached.  This second stage rate should take the glass to around 370°C/700°F, where the rate to room temperature can be doubled as much as six times the initial cool rate.


Difficult pieces
Tack fused and other pieces with uneven thicknesses require more care in the annealing to ensure even cooling of the whole without a greater variation in temperature than +/- 5°C.  As said above, tack fusing is one of the most difficult of styles to anneal adequately and the blog entry indicates some factors requiring more careful annealing.

As an example, a piece 6mm thick, with two layers of rectangular and pointed pieces that are just barely rounded.  This adds five factors of complications for the fusing - two levels of tack fusing, rectangular pieces, pointed pieces, laminated tack fusing.  This number of complications increases the practical thickness to 21mm – 6mm of flat base, 3mm each layer of tack (6mm), 3mm for rectangles, 3mm for pointed pieces, 3mm for laminated fuse.  Because this is tack fused, the next practical step up in the table needs to be used. That is the one for 25mm, which requires a four-hour temperature equalisation soak, and 15°C per hour initial anneal cool rate.

Of course, a simpler method can be used, as it has been researched and practiced by many people.  That is simply double the thickest part of the piece and use that thickness for the anneal soak and cool.  Sharp tack profiles need to be annealed as though 2.5 times thicker, and contour profiles only need 1.5 times the thickness.


Glass other than Bullseye
It is possible to apply these times and rates to any glass of which you know the annealing point.  The annealing soak can be set above the lower strain point, which to be safe, can be taken as a point 35°C/63°F below the annealing point.

E.g., if you are annealing a 12mm slab of float glass, the annealing point of which (in the UK) is 540°C, you chose a temperature of 505°C to do your two-hour soak, followed by a cool rate of 55°C/100°F to 427°C and then 99°C/178°F per hour for the second stage cool to 370°C/700°F.  The final cool of 330°C/595°F.  So, you can see the soak times, rates and target temperatures remain the same regardless of the glass type.  




More discussion on annealing and cooling is given in the ebook Low Temperature Kilnforming from Bullseye and Etsy.

Wednesday, 27 November 2024

Reducing Annealing Time for Float Glass

Credit: Bullseye Glass Co.


Annealing float glass seems take a long time. The annealing point (Tg) is higher than most fusing glasses, although float glass is part of the family of soda lime glass. This group of glasses should be cooled slowly from annealing temperature to 427ºC/800ºF and below to reduce risks of thermal shock.  This makes a greater temperature range over which to  anneal float than fusing glasses, consequently it extends the cooling time and increases energy expenses.

It does not have to be this way.  Annealing of glass takes place over a range.  This range extends below the published annealing point (Tg).  This is the temperature at which equalisation can most quickly take place, but it is not as energy efficient as starting in the lower range.  Annealing points (Tg) vary between manufacturers, but these are some of them:

Pilkington Optiwhite              559ºC/1039ºF

Pilkington Optifloat               548ºC/1019ºF

USA float (typical)                548ºC/1019ºF

Australian float (average)      550ºC/1022ºF

The annealing range extends to a practical 38ºC/68ºF below the Tg temperature.  Annealing at a lower temperature can be as effective at the lower portion of the range as at the Tg.  Using a lower annealing soak temperature reduces the temperature range of the first cooling stage by as much as 38ºC/68ºF, and reduces the cooling time without increasing risks of breaking.  It also creates a denser glass according to scientific research.  Denser glass is arguably a stronger glass.

This means that the annealing of float glass can take place at the following reduced temperatures:

Pilkington Optiwhite              521ºC/971ºF

Pilkington Optifloat               510ºC/900ºF

USA float (typical)                510ºC/900ºF

Australian float (average)      512ºC/954ºF

 

This reduces the first cooling stage for 12mm/0.5” Pilkington Optiwhite from 2 hours 24 minutes to 1 hour 43 minutes.  Forty-one minutes may not seem much but in electricity costs is significant.  Also using the Bullseye concept of a three stage cooling, further savings can be made.  Their research shows the second cooling stage to 371ºC/700ºF can be increased by 1.8 times the first cooling rate, saving further time and energy.  The chart which shows these rates is Annealing Thick Slabs -  Celsius and - Fahrenheit.


More information on annealing is available in the ebook Annealing: Concepts, Principles and Practice


Annealing float glass at the lower part of the annealing range reduces the time and cost of firings.

Wednesday, 14 August 2024

Slow Rates to Annealing

"I have seen recommendations for slower than ASAP rates from the top temperature, but most schedules say 9999 or ASAP.  Which is right?"

Slow drops in temperature from top to annealing temperatures risk devitrification. Accepted advice is to go ASAP to annealing temperature to avoid devitrification forming.

Breaks do not occur because of a too rapid drop from top temperature to annealing. The glass is too plastic until the strain point has been passed to be brittle enough to break. On the way down that will be below an air temperature of 500˚C/933˚F.

credit: ww.protolabs.com


Different kilns cool from top temperature at different rates. Ceramic kilns are designed to cool more slowly and may need assistance to cool quickly.  This is usually by opening vents or even the door or lid a little. Glass kilns are designed to lose temperature relatively quickly from high temperatures. They do not need a crash cooling as ceramic kilns may need in certain circumstances.  Of course, crash cooling may be necessary for some free drops and drapes.

The length of the soak at annealing is determined by the effective thickness of the piece.  Tack fusing needs to be annealed for thickness as a factor of 1.5 to 2.5, depending on profile.

The extent to which you control the cooling to room temperature after the anneal soak is dependent on the calculated thickness of the piece you are cooling. The objective is to keep the internal temperature differential to 5˚C/10˚F or less to avoid expansion/ contraction differences that are great enough to break the piece. Those rates are directly related to the required length of the anneal soak.  Those rates can be taken from the Bullseye chart for Annealing Thick SlabsThe Fahrenheit version is is available too.

An example.  If you have a 2 layer base with 3 layers (=15mm) stacked on top for a rounded tack fuse, you need to fire as for at least 30mm. This will require controlled cooling all the way to room temperature.

  • ·        The rate to 427˚C /800˚F will be19˚C /34˚F
  • ·        The rate to 370˚C /700˚F will be 36˚C /65˚F
  • ·        The final rate 120˚C /216˚F to room temperature.

You may need to wait a day before any coldworking. An example from my experience shows the necessity.  I checked a piece for stress a few hours after removing the piece from the kiln when it felt cool to the touch. It puzzled me that stress showed, although it didn't on similar pieces.  The next morning, I went to check if I misunderstood the reading. Now, a full 15 hours after coming out of the kiln, there was no stress.  The example shows that the glass internally is hotter than we think. And certainly, hotter than the air temperature.

In the temperature regions above the strain point, the glass needs to be cooled quickly. In the annealing region and below the glass needs to be cooled slowly.

More information is available in the eBook Low temperature Kilnforming.  This is available from Bullseye or Etsy

Wednesday, 15 May 2024

Slumping contrasting colours and styles

 A question about why a tack fused 6mm/0.25” piece of combined dense white and black in a slump firing broke has been raised.  Other pieces of black and other whites also tack fused in the same firing did not break.


"Living in the Grey" Stephen Richard



Contrasting colours

Combining the most viscous and the least viscous of bullseye glasses - dense white and black - is a challenge.  The survival of other pieces in the firing with slightly less viscous white give an indication.  Their survival shows that the anneal and cooling conditions were too short and fast for the broken piece. 

It may be worth checking how much stress is in the surviving pieces.  It may not be possible directly on these fired pieces. There is a way.  Mock up the black and white in the same way as the surviving pieces.  Put this on a larger clear piece and fire in the normal way. This enables you to see stress in opalescent layups. If there is any, it is revealed on the clear by using polarising filters. 

The usual recommendation is to anneal and cool as for twice the thickness was followed in this firing.  It is important to anneal and cool more conservatively in cases of contrasting colours. Strongly contrasting colours and styles (low viscosity transparent and high viscosity white opalescent) require more time at annealing and need slower cooling.  I do that by using a schedule for one layer thicker than calculated.  In this case, as for 15mm/0.61” (two tack layers needs firing as for four tack layers, plus one extra for the high and low viscosity combination).

Viscosity

The reasons for this are viscosity:  

·        Annealing is done at a temperature that achieves a viscosity of around 1013.4 poise. It can be done in a range from there toward the strain point of 1014.5 poise.  Below the strain point temperature (which is determined by the viscosity), no annealing can occur.  The glass is too stiff.  The closer to the strain point that the annealing is done, the more time is required at the annealing temperature.

·        The annealing of Bullseye is already being done in the lower range of viscosities. It is possible the viscosity of the white is so high as to be difficult to anneal with the usual length of soak.

·        Although I do not know the exact viscosities of dense white and soft black at the annealing temperature, it is known white has a higher viscosity than the black.  The means to achieve less stress in the glass is to hold at the annealing temperature longer than normal.  A cooling schedule related to the length of the anneal hold is needed.  This information can be obtained from the Bullseye chart for annealing thick glass.  The rates and times apply to all soda lime glass, which is what fusing glass is. Only the temperatures need to be changed to suit the characteristics of your glass.

Slumping

The slumping of this combination of high and low viscosity glasses requires more care too.  My research has shown that the most stress-free result in slumping is achieved by firing as for one layer thicker than that used for the fuse firing.  For a tack fuse, this means firing for twice the thickness, plus one more layer for contrasting colour and style.  Then schedule the slump by adding another layer to the thickness.  This means scheduling as for 19mm/0.75"instead of as for 12mm/0.5”.  This is to account for profile, contrasting colours, and stress from slumping.  This is about three times the actual height of the piece.  

Slumping tack fused pieces of contrasting colours requires very cautious firing schedules.  These longer schedules need to have a justification.  It is not enough to add more time or slow the cooling just in case.  Excessively long anneal soaks, and slow cools can create another set of problems. 

More viscous glass needs more time at the annealing soak to an even distribution of temperature between the more and less viscous glasses.

More information about other low temperature processes can be found in my eBook Low Temperature Kilnforming.  Available from Bullseye and Etsy  

Wednesday, 13 March 2024

Heat Up vs Annealing

I am amazed by the effort put into ramp up rates, bubble squeezes, and top temperatures in comparison to annealing.  The emphasis on social media groups seems to be to get the right ramp rates for tack fuses and slumps, bubble squeezes, etc.  Most of the attention is on the way up to processing temperature.

The treatment of annealing and cooling is almost cavalier by comparison.  The attention seems to be on what temperature, and how long a soak is needed.  Then some arbitrary rate is used to cool to 370ºC/700ºF.



Annealing, in comparison to firing to top temperature, is both more complex and more vital to getting sound, lasting projects completed.  Skimping on annealing is an unsound practice leading to a lot of post-firing difficulties.

Annealing is more than a temperature and a time.  It is also the cooling to avoid inducing temporary stress. That stress during cooling can be large enough to break the glass.  This temporary stress is due to expansion differentials within the glass.

People often cite the saving of electricity as the reason for turning off at 370ºC/700ºF.  My response is that if the kiln is cooling off slower than the rate set, there will be no electricity used.  No electricity demands.  No controller intervention.  No relay operation.

Annealing at the lower end of the range with a three-stage cooling provides good results.  The results of Bullseye research on annealing are shown in their chart for annealing thick items.  It applies to glass 6mm and much larger.  It results from a recommendation to anneal at the lower end of the annealing range to get good anneals.  Other industrial research shows annealing in the lower end gives denser glass, and by implication, more robust glass.  Wissmach have accepted the results of Bullseye research and now recommend 482ºC/900ºF as the annealing temperature for their W96.  The annealing point of course remains at 516ºC/960ºF.

Bullseye research goes on to show that a progressive cooling gives the best results.  They recommend a three-stage cooling process.  The first is for the initial 55ºC/º100F below the annealing temperature, a second 55ºC/100ºF cooling and a final cooling to room temperature.

It is a good practice to schedule all three cooling rates.  It may be considered unnecessary because your kiln cools slower than the chart indicates.  Well, that is fine until you get into tack and contour fusing.  Then you will need the three-stage cooling process as you will be annealing for thicknesses up to 2.5 times actual height.

 

Of course, you can find out all the reasons for careful annealing in my book "Annealing; concepts, principles, practice" Available from Bullseye at

https://classes.bullseyeglass.com/ebooks/ebook-annealing-concepts-principles-practice.html

Or on Etsy in the VerrierStudio shop

https://www.etsy.com/uk/listing/1290856355/annealing-concepts-principles-practice?click_key=d86e32604406a8450fd73c6aabb4af58385cd9bc%3A1290856355&click_sum=9a81876e&ref=shop_home_active_4