Showing posts with label Stained Glass Supplies Ltd. Show all posts
Showing posts with label Stained Glass Supplies Ltd. Show all posts

Friday, 7 February 2025

Cutting from Cartoon

The cutting of glass directly over the cartoon without patterns is variously called trace cutting, English or European method. The advantages include a more direct process with fewer operations, making for less chance of inaccuracies.  These make this method quicker than using patterns or templates to draw or cut around. The disadvantages are that you still need to make patterns for opalescent or very dark glass, and there is no pattern to guide any grinding required.

To employ the method, use a strong contrast ink for drawing the lines of the cartoon. Draw these in the appropriate width - for copper foil (ca. 0.8mm).  This can be accomplished with a ball point pen or fine felt tip.  For lead, a thicker line (ca. 1.6mm) is required - a bullet tipped felt pen is usually appropriate, if it is not worn.

leadlightdesign.com


To cut, place the glass over the appropriate part of the cartoon and cut at the inside edge of the line. It is best to cut and break one line at a time.  Re-set the newly cut edge along the cutline and score the next line.  Break it and repeat the number of times required to cut out the whole shape.  Which line should be the first to be scored and broken is described here

Although the glass is normally only three millimetres thick, there is some possibility of a refraction of the light if you look from the side of the cutter.  As described elsewhere, you should be holding your cutter upright in the left to right plane and angled slightly back toward you so that you can look with your dominant eye along the barrel of the cutter and head.  This ensures you are directly above the cut line and do not have any refraction caused by the glass. 

Translucent glass may, and opalescent glass will, need a light box to assist in the scoring.  This increases the light coming through the cartoon and glass to enable a sharp image of the lines to be seen.  This means that if you intend using opalescent glass, your cartoon should be done on translucent paper to allow the maximum light through.

freepatternsforstainedglass.com


For black, dense and strongly opalescent glass, pattern pieces will need to be cut, as the insufficient light will pass through the glass to be able to see the cartoon accurately.


The reduction in the number of operations to guide the cutting of the glass also reduces the occasions for small errors to creep in.  It does increase the accuracy of cutting and speed of building a panel.

Wednesday, 6 May 2020

Pot Melt Saucers as Dams for Melts



Preparation

Many ceramic plant pot saucers can be used as circular moulds.  Most are unglazed and will accept kiln wash easily.  Some are unglazed, but polished to such an extent they are no longer porous.  These and glazed flower pot saucers need some preparation before applying kiln wash.

Plant pot with saucer


Polished and glazed saucers require roughing to provide a key for the kiln wash solution to settle into.  This can be done with normal wood working sand papers.  You may want to wear a dust mask during this process, but not a lot of dust is created.  You could also use wet and dry sandpaper or diamond handpads with some water to reduce the dust further.

If the sanding of the surface does not allow the kiln wash to adhere to the saucer, you can heat it.  Soak it at about 125C for 15 minutes before removing it from the kiln to get the heat distributed throughout the ceramic body.  One advantage to the ceramic is that it holds the heat, because of its mass, for longer than steel.  Apply kiln wash with a brush or spray it onto the warm saucer.  As it dries, apply another layer of kiln wash.  Two or three applications should be enough to completely cover the surface.  If not, then you probably will need to heat up again before repeating the process.


Alternatives to plant pot saucers

There are alternatives to the saucer approach to getting thick circles from a pot melt.

 

Fibre paper
You can cut a circle from fibre paper and melt into that.  The advantage of fibre paper is that it requires little preparation other than cutting and fixing.  You may have only 3mm fibre paper and want a 9mm thick disc.  Simply fix the required number of layers together with the circle cut from each square.  The fixing can be as simple as sewing pins, copper wire, or high temperature wire.  Then place some kiln furniture on top of the surrounding fibre paper to keep it in place on the shelf during the melt.  This furniture can often be the supports for the melt.


Fibre board
If you find cutting multiple circles of the same size a nuisance, you can use fibre board.  Simply cut the circle from the board with a craft knife.  You will probably want to line the circle with fibre paper, as the cut edge of fibre board can be rough.  Alternatively, you can lightly sand the edge.  Wear a dust mask and do this outside, if possible, to keep the irritating fibres away from the studio. If you want a thicker melt than one layer of board can give, just add another in the same way as for fibre paper.

In both these cases, you may wish to put down a layer of 1mm fibre paper to ensure the glass does not stick to the shelf and does not require sandblasting.  

The advantage of the fibre paper or board alternative to flower pot saucers is that you do not need to kiln wash anything unless you want to. If you do not harden the fibre paper or board, it will not stick to the glass.


Vermiculite board
Another alternative is vermiculite board.  The advantage of this is that it comes in 25 and 50 mm thicknesses, so you can make the melt as thick as you like without having to add layers.  You can cut the vermiculite board with wood working tools.  Knives will not be strong enough to cut through the vermiculite board. You will need to kiln wash or line the vermiculite with fibre paper, as the board will stick to the glass without a separator.


Damless circles
Of course, if you want a circle without concern over the thickness, you can do the melt without any dams. You need to ensure that the shelf is level.  Any supports for the pot will need to be both kiln washed and far away enough that the moving glass does not touch the supports and distort the circle.  In general, one kilogramme of glass will give a 300mm circle, so your supports need to be further apart than the calculated diameter of the circle.  An undammed circle will vary from 6mm at the edge to as much as 12mm at the centre, depending on temperatures and lengths of soaks.

Sunday, 29 March 2020

Trimming the Came on Site

There are a variety of reasons for the panel not fitting the opening easily. These can range from poor measurements through parallel, or trapezoidal openings to irregular perimeters of the openings.



In the cases of irregular openings, you can trim the edge cames if you have used 12mm (1/2”) or more wide came. The quickest way of trimming cames to fit the opening is to use a rasp or “surform” tool. The open nature of the teeth, allows the lead to fall away. It is much quicker than using a lead knife, and it puts less pressure on the panel.

Friday, 27 March 2020

Reinforcement

Reinforcement is probably the most important design element in stained glass. Without adequate reinforcement, all other effort and results are secondary, because an inadequately reinforced work will not survive, and that is sad.

GuidelinesThere are no all-encompassing reinforcement rules. There are however some basic guidelines:
  • Restrict non-reinforced panels to between 2 and 4 perimeter metres (a rectangle of 1 by .5 meters up to a square of 1 meter).
  • An abundance of horizontal or vertical lead lines within the leading concept are most likely best served by a vertical reinforcement system.
  • A diagonal or bent reinforcement bar dilutes its reinforcement capacity in proportion as it deviates from the straight. Such supports serve to merely stiffen the section.
  • Know that most reinforcement systems provide only lateral reinforcement.
  • In most architectural situations which adhere to sections of 4 perimeter metres, reinforcement will usually be 12” to 18" apart in vertical accommodations, with an average around 15".
  • Placement of reinforcement should be established on the initial scale layout in which the design is to be done. It should not be an addition after the whole is designed. That increases the likelihood that the reinforcement will be an intrusion upon the design.
  • Very tall or wide windows should have an armature of some sort. This is commonly "T" bars for the panels to rest upon without transferring their weight to the panel below. Other more complicated armatures can be seen in large windows, such as at Canterbury Cathedral.

With diamond and other quarry lights, reinforcement placement cannot always be equally spaced. In such instances, it is probably best to have the shortest distances between the reinforcement at the base of the section where the weight creates the greatest likelihood of buckling.

Structural Reinforcement


Leaded light panels often require additional support against wind pressure or vibration. Whether this is needed depends on the size and location, e.g. if in a door or a ventilating window that is constantly being opened and shut.  Large leaded glass windows need some bracing against the force of wind and rain. This can be achieved by using one of the following supports:
  • Saddle Bar
  • Reinforcing Bar (Rebar)
  • Steel Core or Steels
  • Zinc Section

Saddle Bars are the strongest method of support and are used in large external windows for preventing panels from bowing inwards. They resist wind pressure in exposed situations. Saddle bars form part of the latteral support structure of the window. These bars are attached to the panel with copper or lead ties.  These ties are soldered to solder joints across the narrow width of the panels.  The bars are fixed to the perimeter of the opening either by the mouldings or by being inserted into holes in the frame. The sides of the opening provide the ancor points for the bar.  The panel is fixed to the bar by twisting the ties around it.



A saddle bar fixed in position at the side and the ties being twisted around the bar.


Sometimes the opening is divided by sideways "T" bars.  Generally the leg of the "T" faces outwards and the panel is set onto the ledge formed by the leg of the "T".  This leg often has a series of holes drilled in the leg, for pins to be inserted to hold the panel in place until the sealant has cured.


An example of "T" bars being used on a small side opening window


Rebar is another external support.  It generally is a zinc coated steel strap about 2mm by 10mm and asl long as needed to cross the panel.  This tends to be soldered directly to the panel at the solder joints either on the inside or outside. One advantage of this material is that it can be bent to conform to the lead lines of the panel.  In consequence it is not as stiff as saddle bars are.




Steel core
Steel cores take two forms - either steel-cored lead or steel strips fitted into the lead cames when leading.  The steel cored lead came is less available nowadays.  They are mainly used in domestic glazing where support is required particularly in leaded lights with diamond panes when they are inserted in continuous diagonal leads. The steel cores are not adaptable to significant curves.


Steel cored lead came cut away to show the steel core


Zinc

Zinc section came is often used to frame a panel that is not glazed into a window or frame. It has been used in the past for both straight and curved lines.  Using it for curves requires a came bending machine to give good, regular curves.  It gives a panel strength for ease of handling, but does not resist sagging or bowing at the centre.  The other disadvantage of zinc is that it corrodes much faster than lead.


Image showing a variety of zinc came

Wednesday, 18 March 2020

Candle shades




These kinds of drapes are generically known as handkerchief drops, as they form the kind of shape that is formed by holding the cloth in the middle and letting it drape.  They can be done as small drapes over kiln posts, cocktail shakers, and much larger forms.


Two heights of new cocktail shakers



A well used cocktail shaker with kiln wash



A kiln post wrapped in preparation for firing



Two short kiln posts after firing


When preparing several drapes to be fired at one time you need to consider several factors.


Higher in the kiln is hotter.
The heat in a kiln, as in an oven, is greater the higher in the kiln is supported.  This means that taller supports will drape quicker than shorter ones. The consequence is that all the drapes should be of the same height.

A single layer that has begun to stretch at the shoulder of the former 


Larger spans fall quicker than smaller.
The more of the glass that is unsupported, the quicker it will fall, even at the same height. This is because the larger amount of unsupported glass has more mass than a smaller one and so falls quicker.  Plan for all the glass to be of similar sizes.

These two were fired at the same time. The back one is larger than the front 


Different shapes fall in different ways.
Squares and circles are the most common shapes used in a  drape. The corners of squares are points that are further away from the centre of the support than the sides.  These points begin to fall first, drawing the sides in later in the firing.  Circles form a taco shape before the ends of the “taco” begin to fall.  This deformation of the circular “taco” takes longer than a square takes.

Care needs to be taken that the glass does not thin excessively at the shoulder of the support.  There is less difficulty, if the same shapes are fired together as different heat work is required for each shape.


Observation by peeking is required to stop free drops at the right time.
As in all drapes, it is important to observe the progress of the drape at intervals.  This is best done by quick peeks to note the development of the shape and to move to the cooling segment when the drape is complete. This also requires a scheduling of a long soak and knowledge of how to advance the kiln controller to the next segment of the schedule.

Monday, 24 February 2020

Lead Light Cement

You can make your own lead light cement as the materials are fairly common and safe to use.  I have altered the original recipe through experience.  Too much of mineral spirits dries out the mix so quickly that the linseed oil cracks early in its life.  This results in the possibility of water leaking through the cracked cement.  One third or less of the dryer (mineral spirits) reduces the chance of too rapid drying.  I no longer use a drier at all.  This is my modified recipe.

Recipe

7 parts whiting/chalk
2 parts boiled linseed oil
(measured by volume)
1-2 Tablespoons colorant
This can be lamp black (carbon), black poster paint, concrete colorant powders, or black oil paint in sufficient quantity to give a black or dark gray colour to the otherwise off-white colour of the whiting and linseed oil.  

Do not use water based colorants, such as acrylic paint.  This does not mix with the linseed oil. Instead it forms a collodial mixture that interrupts the formation of the long linseed molecular chains that make it so good as a long term sealant.

The mixed leaded light cement



Method

Add the whiting (reserving about one quarter) to the linseed oil. Mix this well, by hand or with a domestic mixer capable of mixing bread dough. When these are mixed thoroughly, check the consistency. It should be like molasses on a cold morning - barely fluid.  At this point, add the colorant, so you will know the current colour and can adjust to make it darker.

Add more whiting as required to get the consistency you want. Experiment a little to find what suits you best. If you have to deliver the panel quickly, for example, you need to increase the proportion of whiting to make it stiffer. 


Comment

You should make only what you will be using on the current project, as the whiting separates from the linseed oil and sinks to the bottom in only a few days. The commercial cements have emulsifiers to keep the whiting from settling and so extend the life of the product. Since making your own is cheap and quick to make, there is no saving in making a lot.


Lead light cement is a simple, inexpensive sealant for leaded glass that you can make for yourself.

Wednesday, 5 February 2020

Leading - the First Glass Pieces

After establishing the perimeter lead cames, place the first glass piece into the corner formed by these cames. 



You only need to establish one vertical and one horizontal came to begin with. The other two will be placed at the conclusion of the leading.



Normally, you will be working from the lower left corner toward the upper right corner of the pattern if you are right-handed. The reverse is the case for left-handed people. 





Hold each piece of glass in place with some scrap lead and nail. The scrap lead will prevent the nail from chipping the glass. It's important all glass is held in place with nails so no shifting occurs while working in another area of the panel.




Fitting the rest of the glass to the cartoon is described here


Revised Feb 2020

Tucking Lead Came

It is most usual in many countries to butt lead cames against one another. In continental Europe the tucking of cames is more common. In this process, which has the advantages of speed and accuracy, the came is first fitted to the glass and then cut at the edge of the glass.

The first step is to cut the came to the appropriate angle to meet the lead to which it is to be joined. However before presenting the cut came to the joint, one end is lightly tapped with a small hammer to slightly curve the end of the came. This allows it to slip inside the leaves of the came to which it will be soldered.











The came is then shaped to the glass as normal. However, rather than removing the came for the next cut, the came is cut to the length of the glass, often using the glass as a guide. This end is then supported on the lead knife and tapped with the hammer to curve the end, ready for tucking into the next piece of came. Care is required so that you don’t crush the came and break the glass, nor miss the came and hit the glass or your fingers. With practice, there are few accidents.





Diagramatically, the tucked lead looks like this:




Tucking lead provides very accurate joints with no gaps for solder to fall through. Some argue it provides a stronger panel as the hearts of the jointed cames almost meet. The main immediate gain is quicker soldering.

Wednesday, 22 January 2020

Using Ceramic to Drape



Characteristics

Before choosing a ceramic shape to use in draping of glass, you need to consider the characteristics of the two materials.  This is one circumstance where CoE is actually useful. 

The expansion of the two materials is different. Soda lime glass typically has an expansion rate - in the 0°C to 300°C range - of 81 to 104.  Ceramic has an expansion rate - in the 0°C to 400°C range - of 30 to 64.  This is important in the final cooling of the project.  As the glass expands more than the ceramic on the heat-up, so it also contracts more during the cool.  This means that the glass will shrink enough to trap the ceramic or even break if the stress on the glass is too much. 


Shape

The shape of the ceramic form will have a big effect on the usability of it as a mould.  Ceramics with right angles between the flat surface and the sides will not be suitable for draping without modifications or cushioning.  The forms suitable for draping need to have a significant draft to work well.

Ceramic forms such as rectangles, cubes, and cylinders do not have any draft in their form.  
A cube shape unsuitable for draping

Ceramic cylinders with straight sides

Although rounded at the base, the sides are too straight to be a draping mould


The glass will contract around these forms until they are stuck to the ceramic or break from the force of the contraction around the ceramic.

You can experience this trapping effect in a stack of drinking glasses.  Sometimes one glass sticks inside another even though there is a slope (i.e., a draft) on the sides of the glasses. This happens mostly when you put a cold glass inside a warm one.  On cooling the warm glass contracts to trap the cooler one. You can separate these by running hot water on the bottom glass, so that it expands and releases the inner, now cool, one. 


Effect of Shape

The ceramic contracts at about half the rate the glass contracts (on average), unlike steel which contracts faster than the glass. This means steel contracts away from the glass, while the glass contracts against the ceramic, on the cooling.

Because the glass is in its brittle or solid phase during the last 300°C to 400°C, this contraction tightens the glass against the ceramic, causing stress in the glass, even to the point of breaking.

However, if you choose ceramic forms with significant draft, you can drape over ceramic.  This is possible when the slope is great enough and the form is coated with enough separator, to allow the glass to slip upwards as it contracts more than the form. Experience with different draft forms will give you a feel for the degree of slope required. 
 
These pyramid shapes have sufficient draft to allow the glass to move up the mould during cooling.


Compensation for Lack of Draft

You can compensate for the insufficient draft of ceramic forms by increasing the thickness of the separators for the form.  The hot glass will conform to the hot ceramic, so there needs to be a means of keeping the glass from compressing the form while cooling.  This can most easily be done by wrapping the form that has little or no draft with 3mm ceramic fibre paper.  It is possible to get by with as little as 1mm fibre paper, but I like the assurance of the thicker material.


Kiln posts wrapped in 3mm fibre paper and secured with copper wire

The fibre paper can be held to the form by thin wire wrapped around the outside of the fibre paper. The advantage of the 3mm fibre paper is that the wire will sink below the surface of the paper.  You can tie off the wire with a couple of twists.  Cut off the ends and push the twist flat to the fibre paper to keep the glass from catching onto the wire.  If you want further assurance, you can put a bit of kiln wash onto the wire.


Conclusion

The choice of ceramic shapes to drape glass over is very important.  It needs to have sufficient draft and separator to allow the glass to slip upwards as it contracts more than the ceramic during the cooling.  You often can use items with no draft if you wrap fibre paper around the sides of the form.



Wednesday, 20 November 2019

Pot Melt Contamination

Pot melting occurs at temperatures above that for which kiln washes are designed. This means the kiln wash most often sticks to the back of the melt.

If you put only fiber paper – Thinfire, Papyros, or standard 1mm or 2mm fibre paper – at the bottom, the dripping glass will tear and move it about.  It also tends to incorporate fibers from the refractory papers into the melt.  It is best to avoid fibre papers of any kind on the base.  Using fibre paper around the edges of dams, if you use them, is better than simple kiln washing of the dams.

From wikihow


If you have a sandblaster, it is easy to take the kiln wash off leaving a matt surface. You can live with this for many purposes, but if you want a more polished surface you can take the melt up to fire polishing temperature to shine up the surface. You will need to flip this over and fire again, if the original top surface is what you want to present.  Or if you like the new shiny surface, use it as is.

If you are going to cut the pot melt up for other uses, there is no need to fire polish as the surface does not matter, only the cleanliness, and removal of contaminants.



There is another thing you can do to avoid kiln wash contamination.


The best solution appears to be to put a disk or rectangle of glass on top of fibre paper. It can be clear or any colour you wish, but needs to fill the area enclosed by the dams. This seems to keep the fiber paper from tearing and being incorporated into the glass, even though the base will have the fibre paper marks.


It also works very well when you are confining the melt to get a thicker disk. Make sure you have kiln washed the sides of the container or dam very well, in addition to 3mm fibre paper arranged so that it is 3mm narrower than the expected final thickness, or any excess glass may stick to the dams. The means of arranging the fibre paper around the dams is given here. You may need to grind the marks off the edge of the disk, but this is much easier than grinding it off the bottom.

Wednesday, 6 November 2019

Analysis of Breaks during Fire Polishing




The analysis of breaks in fire polishing can be difficult.  The temperature and heat work are minimal, so the edges can look sharp, which would indicate that the break occurred on the cool down.

But this is where you really need to feel the edges.  If they feel very sharp, then you can be more confident that the break occurred on the cool.  But if there is even the slightest smoothness to the edge as you feel it, the break probably occurred on the heat up to fire polish.



In this picture, there appears to be an annealing break, because of the hooked ends of the break.  That is typical of a break due to inadequate annealing.  It is important to know when the break occurred, so that appropriate remedial action can be taken for future firings of similar pieces.

To determine if the annealing break occurred because the initial anneal was inadequate, it is important to do a touch test. Just looking at it will not be enough.

If the edges were even slightly smoothed, the anneal break occurred on the way up.  This would mean that the anneal of the original blank was not adequate, assuming a reasonable rate of advance was used for the thickness of the piece.

If the edges are razor sharp, the break occurred on the way down, indicating that the anneal after the fire polish was not adequate.  This would mean that in future the annealing needs to be done more carefully on fire polished pieces.

Being too quick to apply a diagnosis of a break during a fire polish can lead to the wrong conclusion, and so the incorrect alteration of future schedules.

Saturday, 2 November 2019

Draping over steep moulds

Draping over a narrow or small supporting ridge with large areas of glass is difficult.

One solution might be just to invert the whole piece and let the glass slide down into the mould. However, there rarely is enough height in a glass kiln for deep slumps, especially with a “V” shaped mould. It has to be high enough for the edges of the glass to be supported at its edges. You could also approach this by having a first mould with a shallower angle or broader support at its centre. Drape over this first, then use the steeper mould as the second draping mould. This makes the balance less critical.


The idea of supporting the glass is the key to doing this kind of slump that seems to require an impossible balancing act, if it is to be done in one go. Place kiln washed kiln furniture at the edges of the otherwise unsupported glass. Fire the kiln, but watch until the glass begins to slump. Then reach in with a wet stick and knock the kiln furniture aside to allow the glass to continue its slump and conform to the mould shape.


The lower temperature you use to do the draping and the slower your rate of increase is, the less the glass will be less marked by the mould. Frequent brief visual inspection during the drape is vital.


Also have a look at a suggestion for the kind of firing required for this here.

Schedules for Steep Drapes

I have been asked for a schedule for draping in the context of a tip on steep straight sided drapes.

What you are trying to do with a steep drape is two things. One is to compensate for the heat sink that the glass is supported by, and the second is to compensate for the relative lack of weight at the outer edge of the glass.



The supported glass transmits its heat to the support, leaving it colder than the unsupported glass. This often leads to breakage due to heat shock at much lower temperatures and slower rates of increase than glass supported at its edges. My experience has shown that - contrary to what I recommend for other kinds of firings - a slow rise with short soaks at intervals up to the working temperature works best. The reason for these slow rises and soaks is to try to get the support and the glass to be as nearly as possible at the same temperature throughout the rise in temperature. The soaks help ensure the mould is gaining heat without taking it from the glass.


The other problem with steep drapes is that the edges of the glass begin to drop more quickly than the area between the support and the edge. This leads to the development of an arc that touches the mould side near the bottom before the glass between the edge and the and the support. Extended soak times are required to allow the glass to stretch out and flatten. If this is done at high temperatures, the glass will thin - possibly to the extent of separating.


So the requirements for a firing schedule on this kind of drape are slow increases in temperature with soaks to avoid thermal shock, and an extended soak at the (low) forming temperature.


Whether using steel or ceramic moulds, I use a slow rise in temperature to 100C with a soak of 15 minutes. I then increase the rate of rise by 50% for the next 100C and give a 15 minute soak there. For the next 200C I raise the temperature at twice the original temperature rise, again with a 15 minute soak. The glass and mould should now be at 400C. This is still at the point where the glass could be heat shocked, so I only increase to 2.5 times the original rise rate but use this rate all the way to forming temperature.


Each kiln has its own characteristics, so giving schedules is problematic. 


  •  A side fired kiln will need slower heat rises than a top fired one. 
  • The closer the glass is to the elements, the slower the rate of increase needs to be. 
  • The kind of energy input - electric or gas - has an effect. 
  • The thickness of the glass is also a factor in considering what rate to use. 
  •  The size of the glass in relation to the size of the support is important - the greater the differential, the slower the heat rise should be. 


So in making a suggestion on heat rises, it is only a starting point to think about what you are doing and why you are doing in this way.

I have usually done this kind of draping in top fired electric kilns where the elements are about 250mm above the shelf, and about 120mm apart. In the case of a 6mm thick piece about three times the size of the support area, I use 50C/hr as my starting point. This is one third of my usual rate of temperature rise. However you must watch to see what is happening, so that you can make adjustments. You should observe at each of the soaks, so you know how the glass is behaving. It will also help you to pinpoint the temperature range or rate of advance that may be leading to any breakages.


On steep slumps, the temptation is to use a high temperature to complete the drape. This is a mistake as the glass will be more heavily marked and tends toward excessive stretching and thinning. What you really need is a slow rate of advance to a relatively low temperature. If you normally slump at about 677C, then you want to do this steep, straight sided drape at 630C or less. It will need a long soak - maybe up to an hour. It will also need frequent observation to determine how the drape is progressing. So plan the time to make yourself available during this forming soak.


Annealing is done as normal, since the mould and glass are more closely together and will cool at the same rate.


The original tip on the set up of a steep straight sided slump is here.