Showing posts with label Glass Separators. Show all posts
Showing posts with label Glass Separators. Show all posts

Saturday, 18 January 2025

Multiple Firings of Kiln Wash

Many people report that they fire multiple times on kiln wash that has not been renewed.  Most add coats over existing kiln wash.  They only remove all the kiln wash when it begins to crack, stick to the glass or gets divots.

We all know that kiln wash fired a second time to full fuse is likely to stick to the glass.  We also know that kiln wash fired to slumping temperatures lasts almost indefinitely.  The kaolin in the kiln wash that allows easy spreading, undergoes a gradual change from platelets to crystals with increasing temperature.  This begins at around 600C/1115F and is complete by 900C/1655F.  The crystalline version of kaolin sticks kiln wash to glass, but as the transition from platelet to crystal is so slow at the lower end of the range, kiln wash on slumping moulds does not exhibit the sticking behaviour even over very many firings.  But, as the temperature rises, the risk of there being enough crystals to stick the kiln wash to the glass also increases.  By full fuse temperatures the proportion of crystalline kaolin is high and becomes complete on the next firing.
. 

credit: Immerman Glass


It is possible to fire several times to tack fusing temperatures without experiencing the sticking behaviour of kiln wash.  However, the more times and the higher temperature used, the greater risk of kiln wash sticking.

Some people continue firing without adding additional layers of kiln wash until cracks, divots, or sticking occurs.  This leads to creating a fix after the failure of the kiln wash. This requires both finding a means of cleaning the kiln wash residue from the glass, and fixing the firing surface.

Others paint a layer of kiln wash on top of the existing separator before high temperature firings. This continues each firing with a fresh layer of kiln wash.  However, the same cracks, divots, and sticking occurs at some point, requiring a complete re-coating of the shelf, and getting the kiln wash off the glass.

credit: Sue McLeod Ceramics


Re-coating of a shelf takes a couple of minutes and can be done with simple tools.  A broad scraper will remove most of the kiln wash.  This can be followed by rubbing with an open weave sanding sheet as used for plaster board or other dry walling.  If you are worried about the dust – which has less risk than fibre papers – you can dampen the surface before beginning the cleaning process.

If the kiln wash has been on the shelf for many firings, it is more difficult to remove, requiring more effort than a single firing.  High temperature firings as for melts also make the kiln wash more difficult to remove. But the same process is used in these cases.
       
Kiln wash in firings at slump and low temperature tack fuses can be reused as many times as it remains smooth and undamaged since the temperature is not high enough to cause the chemical changes.

The ultimate benefits of renewing kiln wash are that not only less effort is required to clean and re-coat, than to fix pieces, and also the cost of kiln wash is significantly less than fibre papers.



Revisde 18.1.25

Sticking Fiber Paper


People are reporting different behaviours of their thicker fibre papers such as small fibres sticking to the glass after a fuse, and a different smell from the burning binders.  These are most likely to be from a body soluble refractory fibre paper.



It seems more suppliers are selling the body soluble versions of fibre paper. It sticks to glass and it gives off a smell of volatile chemicals. I don't like it, but I may have to use it due to the unavailability of the more health risky refractory fibre that worked very well without so much sticking.

There are several ways to minimise the fibres sticking to the glass.  They all relate to adding a separate coating of separator to the fibre paper before firing.  Among the coatings that can be used are 
  • shelf paper on top, 
  • a kiln wash solution brushed on, 
  • kiln wash powder dusted over, 
  • sprinkled alumina hydrate, and 
  • boron nitride (Zyp is one brand name).  

Others have found that simply soaking the fired glass in water overnight allows the fibres to be brushed off with stiff brushes.

It seems body soluble refractory fibre papers tend to stick to the glass at anything over low temperature tack fuses.  This requires an additional layer of separator to be applied over the paper.  It is each person’s choice, of course, but I will continue to attempt to get the older version of fibre paper.

Saturday, 28 December 2024

Slumping a Form Flat


There are a variety of reasons that you might want to make a formed piece flat again for another kind of slump or drape.  There are a variety of things to think about when preparing to make a shaped piece flat.  I am going to assume there are no large bubbles in the piece and there are posts on Large bubbles and Bubble at bottom  including the causes.

There are five groups of things to consider when contemplating flattening an already formed shape.

Shape/form
  • Shallow forms with no angles have the fewest difficulties.  Take it out of the mould, put it on the prepared shelf and fire to the slump temperature.  Observe when it is flat and proceed to the annealing.
  • Forms with angles or multiple curves are a little more difficult.  If the piece has stretched in some areas to conform to the mould, you will have some distortion in the pattern and possibly some thinner areas.  It should be easy to flatten pieces on a prepared shelf with the same schedule, but a slightly higher top temperature than in the previous slump.
  • Forms where the sides have pulled in will become flat, but continue to have curved sides.
  • Deep forms are possibly the most difficult.  The glass may have stretched, giving thin areas.  It may be that the process of flattening the glass will cause a rippled effect as the perimeter of the piece is a smaller size than the original footprint.  These deep forms are the least likely to flatten successfully.

Orientation
  • Which way up? Upside down or right side up?  Shallow forms are easiest to flatten by placing them right side up on a prepared shelf.  For deep or highly formed pieces, it may be best to put it upside down to allow the now higher parts to push the perimeter out if it is necessary.

Thickness
  • Thick glass will flatten more quickly than thin glass when using slower ramp rates, so you need to keep a watch on the progress of the work to avoid excess marking of the surface of the glass.
  • Very thin pieces are likely to develop wrinkles as they flatten.  Even if they do not, there will be thick and thin areas which might cause difficulty in subsequent slumping.
  • Tack fused pieces are likely to tend to flatten at different places and times due to the differences in thickness and therefore weight. This makes observation of the flattening process more important.

Temperatures
  • In all these processes, you should use the lowest practical temperature to flatten.  This means that you will need to peek at intervals to see when it is flat.
  • Your starting point for the top temperature to use will be about the same as  the original slump, normally.  The amount of time may need to be extended significantly. The reason for this is to avoid as much marking on the finished side as possible.
  • Shallow forms and thick pieces will flatten more quickly than others, so a lower temperature can be used.  You will still need to observe the progress of the flattening.
  •  Angled shapes and deep forms will need more heat and time than the shallower ones. 
  • Thin pieces may require more time than thick pieces.
  • Tack fused pieces need more attention and slow rates of advance to compensate for the differences in thicknesses.

Separators
  • Kiln washed shelves are usually adequate for flattening.
  • Thinfire or Papyros are needed when flattening upside down to ease any sliding necessary.
  • Powdered kiln wash or aluminium hydrate can be dusted over the kiln washed shelf when it is felt the form will need to slide on the shelf while flattening.

It may be that after all this, you feel it is not worth it to flatten.  It certainly is worth the effort, if only to learn about the characteristics of the form and its behaviour in reversing the slump or drape.

Wednesday, 3 July 2024

Multiple Layers of Kiln Wash and Fibre

Recently, there have been confirmations of multiple of layers of kiln wash on the shelf under pot melts, frit stretches, and flows.  Ten, and even sixteen layers are mentioned. Also reported are two layers of 1mm fibre paper as a separator for the same processes.

These practices are excessive and wasteful.

 

Kiln wash   

·         Once fully covered, the shelf does not need additional layers. 

·         Stir the kiln wash mix each time you dip the brush.

·         Apply thinly.

·         Use only enough coats to evenly cover the shelf.

 

Fibre and shelf papers are not recommended to be placed on the shelf for high temperature processes.

·         The shelf papers can become incorporated within the glass as it moves along the shelf.

·         Fibre papers inhibit the movement of the glass in unpredictable ways.

 

If you do use fibre papers anyway:

·         Use only one layer.

·         Place a clear sheet of glass over the fibre paper to allow better flow during the firing.

·         A disc of clear glass also helps to separate opalescent glass from the shelf.

 

More layers of kiln wash or fibre paper does not make a better separator.


Wednesday, 24 April 2024

Is there a best separator?

 Is there a best separator?

Kilnforming separators

Separators for kiln forming come in various forms. Chemicals, liquids, sprays, refractory fibre paper, kiln wash, and others I suppose. Which is best?  Each separator has its uses. No one is useful in all circumstances.  Some will be best for one circumstance and others for another.

Boron nitride



Boron nitride (BN) is a high temperature lubricant. It can be sprayed or brushed onto the mould. It adheres to smooth non-absorbent surfaces.  BN is among the most expensive of separators for glass. It seems most useful on detailed, texture and casting moulds. BN is often recommended for steel moulds as it adheres to it better than kiln wash.  Although kiln wash will work as a separator on steel, boron nitride is easier to apply.  Various conditions apply to its use

Kiln wash



Kiln wash works well on slightly absorbent surfaces – ceramic moulds, and shelves, for example. It is the least expensive form of separator.  It is shipped as a powder to which five parts water is added to one of the powder.  This makes a liquid that can be applied to any appropriate surface.  It can be sprayed or brushed. The mix can be with less water on very absorbent surfaces, showing some of its flexibility. 

Almost all kiln washes contain kaolin which helps keep the alumina hydrate in suspension.  But most importantly, allows the solution to be applied evenly.  However, the same kaolin also slowly changes to a crystalline substance by 900ºC/ 1650º that sticks to glass. It needs to be re-applied after every full fuse.

Refractory fibre paper



Shelf paper works well on flat surfaces and simple moulds.  It is a moderately priced separator.  Two of the popular trade names are Papyros and Thinfire.  They both contain alumina hydrate but with different binders.  They provide a smooth surface for the shelf and cylindrical shapes. They are not so good at separating glass from irregular surfaces and incised details.  The shelf paper disintegrates after firing. Although it can sometimes be used several times if undisturbed.  The resulting powder is an irritant and should be disposed of carefully.

There are thicker refractory fibre papers.  These normally range from 0.5mm to 6mm.  Thicker versions are called blanket.  These have the same characteristics as shelf papers, although coarser.  They also do not use binders to keep them together.  These are most useful in forming moulds and insulating glass from rapid temperature changes.

 

The general statement is that there is not one separator that is best in all circumstances.  Each has its strengths.  Knowledge of the objective of the firing and its conditions will help in choosing the right one.

Wednesday, 8 November 2023

Steel Moulds

Credit: Slump and Fuse


Do steel moulds need to be kiln washed for slumping?

Some prominent people in the kilnforming milieu like to promote the extremes of the craft. The argument seems to be that the glass does not get hot enough to stick to the metal at slumping temperatures. It could be argued in the same way that it is possible to slump glass on bronze or unglazed ceramic moulds.

This proposal may come from glass blowing where glass is pressed into metal moulds. The difference is that the glass is in contact with the metal for a short time. And in industrial processes the steel is water cooled.

Also, the higher the slumping temperature, the “softer” and “stickier” the glass becomes. The metal is also heating up and expanding, unlike in glass blowing. If the glass adheres to the metal at all, the greater contraction of the metal during cooling will ensure the glass is stressed and likely break. Therefore, it is usable only in low temperature slumping – below about 630˚C/1167˚F – or for short times. The break patterns that occur when slumping on bare steel show glass most often sticks to the steel and becomes crazed or even shatters on cooling.

Bare steel as a slumping mould is always a risky practice. Just because it can be done - or is done - in glass blowing and other industry settings, does not mean it should or can be done in studio settings. The practice comes with high risks of failure.

To be safe, a separator needs to be used between any supporting structure and the glass. Why risk glass into which you have put significant amounts of work for a few pennies worth of kiln wash, fibre paper, or boron nitride?

 

 

Wednesday, 25 January 2023

Glass Sticking in Cast Iron Moulds


Cast iron bakeware moulds have achieved popularity in decorative glass casting. One problem that seems to be common is that the glass sticks in the mould when cooled.

 

A typical cast iron heart-shaped baking mould

Choosing

 When choosing the mould, try to avoid those with vertical sides. The glass will come out more easily if there is a slope from to top to the bottom of the mould cavity. But it doesn’t stop there.

 The surfaces of cast iron moulds are rough. In casting, the glass conforms exactly to the mould at higher temperatures. On cooling the iron contracts more than the glass, making "sticking" more likely.

Preparation

 Mould preparation should include grinding down the high points to make the mould surface smooth.

 Preparation should also include seasoning of the mould. Clean well with soapy water. Dry. Put a little mineral oil on a paper towel and wipe all the surfaces. Place the mould upside down on short posts. Fire to 300°C/570°F with a 30-minute soak and then turn off. The oil will burn off. You can place fibre paper underneath to catch any excess oil you may have put onto the mould surfaces.

 If you are using kiln wash as your separator, mix it thicker than usual, say 3 parts water to one of powder. This is to give a thick coating of separator on the mould. It may be that you need to heat the mould to avoid runs.

 If you are using boron nitride, it may be possible to add more layers. But this runs the risk of the separator coming off onto the glass.

 Firing

My final suggestion is to use lower temperatures combined with longer soaks.

Releasing

 If the glass still sticks to the mould, turn the mould over. Support the mould with brick or shelf pieces. Tap the back of the mould with a rubber mallet. Not too hard because cast iron is brittle. This most often shifts the glass.

 If the glass is still stuck, put the mould in the kiln upside down on posts a little above the shelf. Fire slowly (say 125°C/225°F) toward 540°C/1000°F. Program the anneal and cool you used previously. Observe frequently to know when the glass has fallen out of the mould. When the glass has separated from the mould, advance to the annealing segment.

 Of course, if the glass has fallen out of the mould by 400°C/750°F, you will not need the anneal soak, although you still will need the controlled cool. So, you can skip the anneal cool and go to the controlled cool down segments.

 

Wednesday, 26 October 2022

Kiln wash beading up

Sometimes kiln wash does not seem to want to stick to the mould.  There are several possible reasons. The main two seem to be a hard spot in the slip cast moulds that we use.  Another is the previous use of boron nitride or other sealant of porous surfaces.

The remedies are different for these two causes.  For hard spots you can add a bit extra kiln wash to the area.  Normally enough separator adheres to the spot to avoid sticking.  This is so even though you can see the spot more clearly than the rest of the mould.

Sealed surfaces present a little more difficulty.  It is possible to carefully sand blast off the boron nitride from the surface using low pressure and very little abrasive.  This works well for textured surfaces, if you are careful.  You can also manually sand the sealant off which works better for regularly shaped smooth surfaces.   The object of both these processes is to remove the sealed surface to reveal the porous material again.  You must remember that you are removing some of the surface of the mould in these abrasive processes.  Once removed kiln wash can be applied as before.

If neither abrasive method works, it does not mean the mould is ruined.  You can continue to use boron nitride.  Or, if you want to avoid the costs of boron nitride, you can sprinkle fine dry kiln wash over the mould.  You should give the mould a final application of boron nitride before using the dry kiln wash.

Wednesday, 19 October 2022

Kiln Wash Mix

There seems to be a view that the exact consistency of the kiln wash mix is important.  Within limits the mix proportions are not vital.  The general recommendations from manufacturers is one part powder to five parts water – both by volume.  This is a good guide for general use.

 

It is possible to make the kiln wash mix too thick.  If it goes onto the shelf or mould in a pasty fashion it is too thick.  A thick mixture leaves definite streaks and uneven levels that are difficult to smooth and level.  If you get these effects, scrape it off and put it into a jar with more water.  Mix until it is creamy to avoid lumps.  Then add more water until you have a very liquid mix.  It needs only be a little less runny than plain water.

 

Is it possible to have too thin a mix of kiln wash?  I suppose it is, but not likely.  If you feel it is too thin, you only need to add more coats of the mix until the shelf surface is obscured. Often when the mix seem thin, it is because the powder has separated from the water.  It is necessary to stir the kiln wash thoroughly to get all the solids in suspension.  Then frequent stirring during the application is necessary to keep the mix even at both the top and the bottom of the container.  Storing the mixed kiln wash in a clear container will enable you to see if kiln wash is still settled on the bottom.

 

The object of the kiln wash is to provide a separator between the supporting surface and the glass.  It needs to be only a film of separator to be effective.  In fact, if the kiln wash is too thick, it will flake and stick to the back of the glass.  In the case of kiln wash - more is definitely worse.

 

For very absorbent materials such as vermiculite or fibre board, I mix kiln wash thicker – about 1:3.  The idea behind this is to reduce the amount of water the mould absorbs.  With less water in the mould, less drying time is needed, especially with a vermiculite mould, where steam pressure could break the mould.

Wednesday, 22 December 2021

Glass Separators


Glass separators tend to be in three forms – powdered, liquid or fibre. These are applied to shelves, moulds and other surfaces that might come into contact with the hot glass.

What do they do?

Glass separators keep the glass from sticking to the shelves, kiln furniture and other supports during the higher temperature parts of the firing.  Glass as used for kilnforming reaches its softening point somewhere around 580°C. The glass will begin to stick to all surfaces as it gets warmer.  The separators are stable at high temperatures and do not stick to the glass or the materials used to separate the glass from its supports.


What are they?

       Liquid and powder separators are most often called kiln wash - or batt wash in the ceramics field.  Normally they are supplied in powder form that is mixed with water for painting onto shelves and moulds. 
They normally have a high content of alumina hydrate, some kaolin (also known as china clay) and sometimes a little silica, plus often a colouring agent that burns away on the first firing to indicate fired and unfired shelves.
       A high temperature lubricant, boron nitride, has come into use for kilnforming and has slightly different characteristics than the alumina hydrate-based kiln washes.

Sheet and blanket forms of glass separators are also widely used.  They have the general name of refractory mineral wool. They are often made from alkaline earth silicate (AES) wool, Alumino silicate wool (ASW) and Polycrystalline wool (PCW).  These have different temperature ranges and levels of health risk. The thin sheets are mainly used for covering shelves and other kiln furniture.  The blanket, which starts at about 12mm, is used mainly for insulation purposes.

Thin papers, similar in thickness to cartridge paper have been developed to give a finer texture than mineral wool separators.  These currently have the trade names Papyros and Thinfire, each with their own slightly different characteristics.

Safety

As with all refractory materials, safety precautions are needed.  In the kilnforming world the risks are not those of the industrial environment because the quantities are less, and the time of exposure is much less.  Still, breathing protection should be used. Eye protection is advisable, as the particles are hard and can scratch the eye surface.  Long sleeves and gloves are advisable when handling refractory fibres.
 

Kiln Wash

This blog concentrates on liquid and powdered separators. It draws on information from the ceramics and kilnforming communities.

Basic Kiln Wash Materials
A lot of the kilnforming knowledge of glass separators comes from the ceramics field. A brief look at the development of kiln wash by ceramicists is instructive to kilnforming. 

In order to make a good kiln wash you need to select materials that have very high melting points and that, when combined, do not create a eutectic that causes melting. Knowing a bit about the properties of materials and the principles of kiln wash allows you to choose the ingredients that make the best wash for your specific situation and avoid costly problems. 
(John Britt www.johnbrittpottery.com ceramicartsnetwork.org › firing-techniques)

The basic materials started as:
EPK Kaolin (which includes alumina)      50%
Silica                                                50%

EPK Kaolin is a high quality, water washed kaolin which is white, has unusually good forming characteristics and high green strength. In mixtures, EPK offers excellent suspension capabilities.  The source of alumina in kiln wash was often kaolin, but now is most often alumina hydrate or alumina oxide.

Silicon dioxide has a melting point of 1710°C and aluminium oxide has a melting point of 2050°C.  A mixture of these two materials will not melt, and will protect the kiln shelves at high temperatures.

This is a good kiln wash for low and mid-range electric firings [for ceramics]. The only problem is that it contains silica, which is a glass-former. So, if a lot of glaze drips onto the shelf, it can melt the silica in the kiln wash and form a glaze on the shelf. Also, when you scrape your shelves to clean them, you create a lot of silica dust, which is a known carcinogen. So, using silica in your kiln wash is not … the best choice.

Another drawback of this recipe is that, if it is used in salt or soda firings, it will most certainly create a glaze on the shelf. This is because silica, as noted above, is a glass-former. When sodium oxide, which is a strong flux, is introduced atmospherically, it can easily melt the silica in the kiln wash into a glass. This is why silica should not be used in a kiln wash recipe for wood, salt or soda kilns. 
(John Britt www.johnbrittpottery.com ceramicartsnetwork.org › firing-techniques)


For glaze firings a kiln wash with more separator and less glass former is better:

Alumina hydrate            50%
EPK kaolin                    50%


Kaolin has a melting point of 1770°C and alumina oxide has a melting point of 2050°C, so it will not melt, even in a … firing [of 1250°C to 1350°C]. These ingredients are called refractory because they are resistant to high temperatures. … This recipe can be used at all temperatures and in all kiln atmospheres. 
(John Britt www.johnbrittpottery.com ceramicartsnetwork.org › firing-techniques)


Kiln washes with kaolin, especially if applied thickly, can flake off the shelf after repeated firing.  The cause of this is the shrinking of the drying kaolin - which is a clay – similar to dried out lake beds. Adding at least half the kaolin as calcined EPK kaolin reduces this shrinkage. Calcining involves drying the kaolin at about 1000°C for some time.  This reduces the physical property of shrinkage, but retains the chemical and refractory properties of a glass separator intact.

This gives a kiln wash consisting of:
Alumina hydrate            50%
Calcined EPK kaolin        25%
EPK kaolin                    25%

You can add more calcined kaolin – up to 35% – if you want. You need to keep enough un-calcined kaolin in the recipe to suspend the other materials so that the suspended materials can be applied smoothly.  One difficulty of increasing the kaolin content of the kiln wash is that it tends to stick to the glass - especially opalescent - on a second firing.

It is, of course, possible to do away with the kaolin entirely.  You can mix alumina hydrate with water into a full milk consistency and apply that to the shelf or other kiln furniture.  It is difficult to maintain the alumina hydrate in suspension, though. After the firing you can brush the dried separator from the shelf into a container for re-use.  You do need to ensure that the powder to be reused is free of contaminants.  It is also important to find very fine grades of the alumina hydrate to minimise the texture on the base of the glass.  Most ceramic grades are coarser than wanted for kiln forming.  You can put the powder in a rock tumbler to make what you find finer than as purchased.

There are many variations on these basic kiln wash recipes. To illustrate the wide variety, some potters just dust alumina hydrate on their shelves to protect them, while some wood firing potters use 100% silica and wall paper paste to make a very thick (1/2-inch) coating that protects their shelves from excessive ash deposits. Still others, who have the new advanced nitride-bonded silicon carbide shelves, don’t even use kiln wash at all because the glaze drips shiver off when the shelves cool. Other potters, who are very neat and don’t share their space with others, may not even use kiln wash so that they can flip the shelves after every firing to prevent warping.

Kiln wash is such a ubiquitous material in the ceramics studio that we take it for granted. … There are many recipes to choose from and many solutions to common problems if we just take the time to learn about the materials we use. 
(John Britt www.johnbrittpottery.com ceramicartsnetwork.org › firing-techniques)

Variants on the traditional glass separators


There are variations in the use of alumina hydrate and kaolin, but there are also other glass separators available, although they tend to be expensive.

An example is zirconium. It is a glass separator with refractory properties, as in its zirconium oxide form it melts 2700°C.  In its zirconium silicate form it has a melting point of 2550°C.  These are available under a number of trade names. This can be added to the kiln wash mix in the knowledge that it will be stable throughout the firing.

But you must be careful in the amount you use, as zirconium silicate is used as an opacifier in glass and glazes.  Also, zirconium oxide is one of the hardest substances in the world.

Boron Nitride

Another very popular glass separator is boron nitride.  It has two forms. 
One is cubic boron nitride, a cubic structure similar to diamonds.

     

  
In the cubic form of boron nitride, alternately linked boron and nitrogen atoms form a tetrahedral bond network, exactly like carbon atoms do in diamond.  Cubic boron nitride is extremely hard and will even scratch diamond. It is the second hardest material known, second only to diamond.  Cubic boron nitride has very high thermal conductivity, excellent wear resistance and good chemical inertness, all very useful properties for a material subjected to extreme conditions. Because of its hardness, chemical inertness, high melting temperature (2973°C) cubic boron nitride is used as an abrasive and wear-resistant coating. Cubic boron nitride (CBN) is used for cutting tools and abrasive components for shaping/polishing with low carbon ferrous metals.  (http://www.docbrown.info/page03/nanochem06.htm)



Hexagonal Boron Nitride

The second form, useful in kilnforming is the hexagonal form of boron nitride.  It forms white plates of hexagons one layer thick like graphite.  These plates have weak bonds and so slide easily against one another.


https://www.substech.com/dokuwiki/doku.php?id=boron_nitride_as_solid_lubricant


It is a good insulator and chemically very inert.  It is stable to about 2700°C.

Hexagonal boron nitride (HBN) is used as a lubricant, since the weakly held layers can slide over each other.  Because of its 'soft' and 'slippery' crystalline nature, and its high temperature stability, HBN is used in lubricants in very hot mechanical working environments.  

The slippery nature and high temperature stability characteristics make this material an excellent coating for moulds and other situations where the glass moves against its supports.

The coating of the moulds needs frequent re-coating because the layers slide from the mould. Boron nitride works very well on solid impermeable surfaces as it adheres easily to smooth surfaces. It can be used on porous surfaces, but does seal those surfaces, meaning that these surfaces cannot be returned to that porous state without significant abrasion.

----- 

The next blog  has notes on refractory mineral wools as separators and health and safety in use.

Wednesday, 20 October 2021

Texture Moulds and Glass Sizes



I had an overhang [on a texture mould] and I heard a pop and opened kiln and saw it cracked off the mold. … [The piece] is 2 layers Bullseye irid placed face down and Tekta [on top]; the mold was sprayed 3-4 times with zyp and Thinfire; and I put mold on kiln posts. [I] fired to 1440[F].

Diagnosis 

The overhang of the glass caused the break. As the glass heats it expands. The ceramic does not expand as much as the glass.  This means even more glass will hang over the edge than at the start.  As the glass reaches slumping temperatures, it begins to drape over the edge. At the same time the glass on the interior is beginning to slump into the textures.  When the glass has fully taken up the texture, the overhanging glass will be touching the outer sides of the mould. This means at the end of the heating and soaking part of the firing, you have the ceramic mould partially and tightly encased in glass.  The glass has formed around the ceramic.

Credit: theavenuestainedglass.com

The physics of the two materials are that glass expands more than ceramic. On cooling, the glass grips the sides of the ceramic mould tightly. This is because it shrinks more than the ceramic.  In this case, the ceramic was stronger than the glass and the strain caused the glass to break.  Upon occasion the opposite can happen.

Two other notes.

The temperature of 781°C is higher than needed.  You will need to do a bit of experimentation to find the right combination of temperature and time for each mould.  You could consider 630°C as an initial temperature with a 90-minute soak.  Bob Leatherbarrow (p.161) describes a method of scheduling a sequence of slightly higher temperatures with soaks.  If the texture is not forming (as determined by observations), you can advance to the next segment with a higher temperature and see how that goes.  When the appropriate amount of texture has been achieved, advance to the cooling to anneal segment.

Iridised surfaces provide a very good separator.  With the iridisation down against the mould, it may be unnecessary to use Thinfire, especially when you already have used boron nitride as the separator.

Further information is available in the ebook: Low Temperature Kiln Forming.

Wednesday, 15 September 2021

Digest of Principles for kiln forming

Some time ago people on a Facebook group were asked to give their top tips for kiln forming.  Looking through them showed a lot of detailed suggestions, but nothing which indicated that understanding the principles of fusing would be of high importance.  This digest is an attempt to remind people of the principles of kiln forming.

Understanding the principles and concepts of kilnforming assists with thinking about how to achieve your vision of the piece.  It helps with thinking about why failures have occurred.

Physical properties affecting kiln work

Heat
Heat is not just temperature. It includes time and speed.

 Time
       The time it takes to get to working temperatures is important.  The length of soaks is significant in producing the desired results.

 Gravity
       Gravity affects all kiln work.  The glass will move toward the lowest points, requiring level surfaces, and works to form glass to moulds.

 Viscosity
       Viscosity works toward an equilibrium thickness of glass. It varies according to temperature.

 Expansion
       As with all materials, glass changes dimensions with the input of heat.  Different compositions of glass expand at different rates from one another, and with increases in temperature.

       Glass is constantly tending toward crystallisation. Kiln working attempts to maintain the amorphous nature of the molecules.

 Glass Properties
·        Glass is mechanically strong,
·        it is hard, but partially elastic,
·        resistant to chemicals and corrosion,
·        it is resistant to thermal shock except within defined limits,
·        it absorbs and retains heat,
·        has well recognised optical properties, and
·        it is an electrical insulator. 

These properties can be used to our favour when kiln working, although they are often seen as limitations.

Concepts of Kiln Forming
Heat work
       Heat woris a combination of temperature and the time taken to reach the temperature.

 Volume control
       The viscosity of glass at fusing temperatures tends to equalise the glass thickness at 6-7mm. 

 Compatibility
       Balancing the major forces of expansion and viscosity creates glass which will combine with colours in its range without significant stress in the cooled piece.

 Annealing
       Annealing is the process of relieving the stresses within the glass to maintain an amorphous solid which has the characteristics we associate with glass.

 Degree of forming
       The degree of forming is determined by viscosity, heat work and gravity.  These determine the common levels of sintering, tack, contour, and full fusing, as well as casting and melting.

 Separators
       Once glass reaches its softening point, it sticks to almost everything.  Separators between glass and supporting surfaces are required.

 Supporting materials
       These are of a wide variety and often called kiln furniture.  They include posts, dams, moulds, and other materials to shape the glass during kilnforming.

 Inclusions
       Inclusions are non-glass materials that can be encased within the glass without causing excessive stress.  They can be organic, metallic or mineral. They are most often successful when thin, soft or flexible.

A full description of these principles can be found in the publication Principles for Kilnforming