Showing posts with label Annealing. Show all posts
Showing posts with label Annealing. Show all posts

Wednesday, 27 November 2024

Reducing Annealing Time for Float Glass

Credit: Bullseye Glass Co.


Annealing float glass seems take a long time. The annealing point (Tg) is higher than most fusing glasses, although float glass is part of the family of soda lime glass. This group of glasses should be cooled slowly from annealing temperature to 427ºC/800ºF and below to reduce risks of thermal shock.  This makes a greater temperature range over which to  anneal float than fusing glasses, consequently it extends the cooling time and increases energy expenses.

It does not have to be this way.  Annealing of glass takes place over a range.  This range extends below the published annealing point (Tg).  This is the temperature at which equalisation can most quickly take place, but it is not as energy efficient as starting in the lower range.  Annealing points (Tg) vary between manufacturers, but these are some of them:

Pilkington Optiwhite              559ºC/1039ºF

Pilkington Optifloat               548ºC/1019ºF

USA float (typical)                548ºC/1019ºF

Australian float (average)      550ºC/1022ºF

The annealing range extends to a practical 38ºC/68ºF below the Tg temperature.  Annealing at a lower temperature can be as effective at the lower portion of the range as at the Tg.  Using a lower annealing soak temperature reduces the temperature range of the first cooling stage by as much as 38ºC/68ºF, and reduces the cooling time without increasing risks of breaking.  It also creates a denser glass according to scientific research.  Denser glass is arguably a stronger glass.

This means that the annealing of float glass can take place at the following reduced temperatures:

Pilkington Optiwhite              521ºC/971ºF

Pilkington Optifloat               510ºC/900ºF

USA float (typical)                510ºC/900ºF

Australian float (average)      512ºC/954ºF

 

This reduces the first cooling stage for 12mm/0.5” Pilkington Optiwhite from 2 hours 24 minutes to 1 hour 43 minutes.  Forty-one minutes may not seem much but in electricity costs is significant.  Also using the Bullseye concept of a three stage cooling, further savings can be made.  Their research shows the second cooling stage to 371ºC/700ºF can be increased by 1.8 times the first cooling rate, saving further time and energy.  The chart which shows these rates is Annealing Thick Slabs -  Celsius and - Fahrenheit.


More information on annealing is available in the ebook Annealing: Concepts, Principles and Practice


Annealing float glass at the lower part of the annealing range reduces the time and cost of firings.

Wednesday, 23 October 2024

Scheduling for Thick Landscapes

Thick slabs often involve numerous firings of increasingly thick work.  I am using an existing example, with their permission, of the first stages of a thick landscape.  The initial concern was with bubbles in the first layup, then the strategy for firing the thick slab.

Plans

This is the first part of a landscape with depth.  It will be fired 5-7 more times.  This first piece will be inverted for the next firing with the clear facing up, to avoid reactions between the colours.  It is similar to an open face casting. There is a Bullseye Tip Sheet on open face casting that will give a lot of information.

Layup


Picture credit: Osnat Menshes

This work has a base of clear that is mostly overlaid with one layer of 3mm pieces, although in some places another layer, and there are some pre-fired elements as well.  It is fired on Thinfire shelf paper.

Bubbles 

There is concern about the number and size of the bubbles after the firing, and how to avoid them.  Will they grow over the multiple firings?

The many small bubbles are characteristic of kilnformed glass.  The few larger bubbles may result from the frit that is under the pieces that form the top surface.  And there are some overlaps of clear over colour that may form pockets where air can collect. I advise leaving the scattering of the frit until all the decorative pieces are in place.  The bubbles will migrate toward the top during the multiple firings.  They will not grow in size unless they combine during the upward migration.  A later suggestion about reducing the number of firings will reduce the bubble migration and risk of increasing in size.


Picture credit: Osnat Menshes


Schedule

Proposed Schedule (Temperatures in degrees Celsius)

1: 180 – 560, 30’    I would go to 610 for 30'

2: 25 – 680, 120’    I would use only 30'

3: 220 – 810, 15’    I would set the top temperature at 816, 15’.

4: 9999 – 593, 30’  Eliminate this segment. 

5: 9999 – 482, 120’ I suggest one hour soak

8: 55 – 370, off      83 – 427, 0’

7: 150 – 371, 0’

8: 330 – to room temperature, off.

 

Eliminate segment number 4.  Any temperature equalisation done at this temperature, is undone by the AFAP to the  annealing.  The temperature equalisation occurs at the annealing temperature. No soak at an intermediate temperature is required.  This blog post gives some information about annealing above and below the annealing point (Tg). 

Firing Incremental Layers

The plan is for five to seven more firings.  Continuing to build up the thickness on each firing, may have some problems.

  • There is increased risk of compatibility problems when firing a piece to full fuse many times.
  • There is a risk of more bubbles and of the existing ones becoming larger as they move upwards and combine with other smaller ones.
  • With each firing the thickness is increasing and so becoming a longer firing.  This is because the heat up, annealing, and cooling each need to be longer.  For example - 6mm needs 3hour cooling, 12mm needs 5 hours, 19mm needs 9 hours. 

Multiple Slabs

These are the main reasons that I recommend firing a series of 6mm slabs separately and combining them in one final firing.  Firing a series of 6mm slabs and then combining them in a single long and slow final firing has advantages.

  • The individual pieces do not need to go through so many full fuse firings, reducing the risk of compatibility problems.
  • The small bubbles in each firing will not have the chance to rise through all the layers to become larger.
  • The total time in the kiln for the combined pieces will be less than adding layers to already fired layers.

Examples

It is often difficult to convince people that firing by adding incrementally to an existing slab, longer firing times are required than by firing a group of 6mm slabs and a single combined firing of all the slabs.  I give an example to illustrate the differences.

Annealing

Assume there are to be a total of eight firings (existing 6mm slab and 3mm for each of seven more firings).  Also assume that each additional firing is of 3mm. This makes a total of 28mm.  Compare annealing and cooling times for each firing:

Firing      thickness       anneal and cool (hours minimum)

1            6mm                    3

2            9mm                    4

3            12mm                   5

4            15mm                   7

5            18mm                   9

6            21mm                   11.5

7            25mm                   14

8            28mm                   17

Total                                   70.5 hours annealing time (minimum)

To fire up 5 six millimetre slabs takes less time – 3 hours annealing and cooling time for each firing cumulates to 15 hours.  Add to that the final firing of 17 hours annealing time.  A total of 32 hours.  This is half the time of adding to the existing slab at each firing.  Multiple 6mm slabs can be fired at the one time if there is space in the kiln, which would reduce the kiln time for the 6mm slabs even further. 

An additional advantage of firing 6mm slabs and combining them, is that bubbles can be squeezed out more easily in the final thick slab fring because of the combined weight of the  slabs.  You could make the individual slabs a little thicker, but that would involve damming each slab.  Not an impossible task of course.  And it would change the calculations, by reducing the number of firings.

Heat Up

Another time saving is to use the second cooling rate from the Bullseye document Annealing Thick Slabs as the first up ramp rate. Take this rate up to a minimum of 540˚C. Although, this is an arbitrary temperature above the strain point to ensure all the glass is above the brittle phase.  It is possible to maintain this initial rate to the bubble squeeze.  But with the slow rises in temperature required for thicker slabs, it is sensible to increase the rate from 540 to bubble squeeze to reduce the firing time.  Once past the bubble squeeze a more rapid rate can be used to the top temperature.  

The heat up times could be about half the minimum cooling times.

A worked example (with certain assumptions) would be:

Firing      thickness       time to top temperature total time.

1            6mm             6.3               

2            9mm             7.1

3            12mm            8.4

4            15mm            10.7

5            18mm            15.9

6            21mm            19.4

7            25mm            25.1

8            28mm            29.1              ca.122 hours

But firing five times for 6mm equals 31.5 hours plus the final firing up of 29.1 hours equals a total of 60.6 hours.  Again about one half the time of progressively building up a base slab to the final thickness.

Savings

This example shows that approximately 90 hours of firing time can be saved by making a series of six millimetre slabs and combining them in a final firing.  There is the additional advantage of reducing the occurrence of bubbles between the layers in the final firing because of the weight of the combined slabs.

Wednesday, 21 August 2024

Slower Ramps on Additional Firings

"Every time you fire a previously fired piece you need to slow down."

This is not accurate. If you have not changed anything significant, the annealing does not need to be extended.  The clearest example is a fire polish.  Nothing has been added. The physics and chemistry of the piece have not changed.  If only confetti or a thin frit/powder layer is added, nothing significant for scheduling has been added.  As nothing significant has changes the annealing used in the previous firing can be used again.

Of course, you do need to slow the ramp up rates on the second firing.  This is because you are firing a single thicker piece.  On the first firing, the pieces are individual and can withstand slightly faster rates. But on third and subsequent firings, if nothing significant has been changed, there is no need to slow rates further.

There is a post which describes this further.



"When adding more thickness more time is needed."

This is the occasion when the annealing soak needs to be extended.  Placing a full sheet of clear glass on the bottom, or less usually, the top, and taken to a full fuse, requires slower ramp rates.   The annealing time for a full fuse can be taken directly from the annealing tables for thick slabs.  

The fusing profile for any additional items has a strong affect on the length of the annealing soak.  If the glass is now of uneven thicknesses, and greater care in assigning ramp rates is needed.  The profile for the piece also determines the amount of additional annealing time required.  A sharp tack of a single additional layer will require annealing as for 2.5 times the total height of the piece at the start or the firing. A rounded tack will need two times and a contour fuse will require 1.5 times.  A full fuse can be carried out for the new total height of the piece without any multiplying factors.

 If the intention with multiple firings is to achieve a variety of profiles within one piece, a slightly different approach is required.  A blog post here describes the process.


The general approach to multiple firings is that unless there are changes to the thickness or profile of the glass, no changes in annealing time is required.  

 

Wednesday, 14 August 2024

Slow Rates to Annealing

"I have seen recommendations for slower than ASAP rates from the top temperature, but most schedules say 9999 or ASAP.  Which is right?"

Slow drops in temperature from top to annealing temperatures risk devitrification. Accepted advice is to go ASAP to annealing temperature to avoid devitrification forming.

Breaks do not occur because of a too rapid drop from top temperature to annealing. The glass is too plastic until the strain point has been passed to be brittle enough to break. On the way down that will be below an air temperature of 500˚C/933˚F.

credit: ww.protolabs.com


Different kilns cool from top temperature at different rates. Ceramic kilns are designed to cool more slowly and may need assistance to cool quickly.  This is usually by opening vents or even the door or lid a little. Glass kilns are designed to lose temperature relatively quickly from high temperatures. They do not need a crash cooling as ceramic kilns may need in certain circumstances.  Of course, crash cooling may be necessary for some free drops and drapes.

The length of the soak at annealing is determined by the effective thickness of the piece.  Tack fusing needs to be annealed for thickness as a factor of 1.5 to 2.5, depending on profile.

The extent to which you control the cooling to room temperature after the anneal soak is dependent on the calculated thickness of the piece you are cooling. The objective is to keep the internal temperature differential to 5˚C/10˚F or less to avoid expansion/ contraction differences that are great enough to break the piece. Those rates are directly related to the required length of the anneal soak.  Those rates can be taken from the Bullseye chart for Annealing Thick SlabsThe Fahrenheit version is is available too.

An example.  If you have a 2 layer base with 3 layers (=15mm) stacked on top for a rounded tack fuse, you need to fire as for at least 30mm. This will require controlled cooling all the way to room temperature.

  • ·        The rate to 427˚C /800˚F will be19˚C /34˚F
  • ·        The rate to 370˚C /700˚F will be 36˚C /65˚F
  • ·        The final rate 120˚C /216˚F to room temperature.

You may need to wait a day before any coldworking. An example from my experience shows the necessity.  I checked a piece for stress a few hours after removing the piece from the kiln when it felt cool to the touch. It puzzled me that stress showed, although it didn't on similar pieces.  The next morning, I went to check if I misunderstood the reading. Now, a full 15 hours after coming out of the kiln, there was no stress.  The example shows that the glass internally is hotter than we think. And certainly, hotter than the air temperature.

In the temperature regions above the strain point, the glass needs to be cooled quickly. In the annealing region and below the glass needs to be cooled slowly.

More information is available in the eBook Low temperature Kilnforming.  This is available from Bullseye or Etsy

Wednesday, 22 May 2024

Slumping and Annealing bottles



"Can a tack fuse schedule for fusing glass can be used to slump bottles?"

It may be that this person does not have the confidence to write a new schedule.  They may wish to use an existing schedule for another purpose. The short answer is “Although a Bullseye or Oceanside tack fuse temperature will be high enough to slump bottles, they are not suitable for annealing”.  There are reasons for this. 

The softening point of float glass, which is similar to bottle glass, is 720ºC/1330ºF.  Slumping would normally be done at about 20ºC/36ºF above this. You also need a slumping hold at this temperature much longer than a tack fuse schedule would use.

if you use a tack fuse schedule for a fusing glass, your annealing will be inadequate. Bottle and float glass tend to have an annealing point of around 540ºC/1005ºF. An annealing for fusing glass will be between 515ºC/960ºF and 482ºC/900ºF.  This is likely to be too low an annealing point for bottles.  Also, the annealing soak is likely to be too short. Slumped bottles are very thick at the base where it folds over the cylinder of the bottle.  This requires a longer anneal soak and slower cool than a schedule for a tack fuse of fusing glass.

Checking for stress in the completed work is normal.  It is essential for your finished bottle if you use a tack fuse to fire it.

 

Schedules should be devised for the glass and layup of each piece. Transferring a schedule for fusing to bottle glass is unlikely to be successful.

Wednesday, 15 May 2024

Slumping contrasting colours and styles

 A question about why a tack fused 6mm/0.25” piece of combined dense white and black in a slump firing broke has been raised.  Other pieces of black and other whites also tack fused in the same firing did not break.


"Living in the Grey" Stephen Richard



Contrasting colours

Combining the most viscous and the least viscous of bullseye glasses - dense white and black - is a challenge.  The survival of other pieces in the firing with slightly less viscous white give an indication.  Their survival shows that the anneal and cooling conditions were too short and fast for the broken piece. 

It may be worth checking how much stress is in the surviving pieces.  It may not be possible directly on these fired pieces. There is a way.  Mock up the black and white in the same way as the surviving pieces.  Put this on a larger clear piece and fire in the normal way. This enables you to see stress in opalescent layups. If there is any, it is revealed on the clear by using polarising filters. 

The usual recommendation is to anneal and cool as for twice the thickness was followed in this firing.  It is important to anneal and cool more conservatively in cases of contrasting colours. Strongly contrasting colours and styles (low viscosity transparent and high viscosity white opalescent) require more time at annealing and need slower cooling.  I do that by using a schedule for one layer thicker than calculated.  In this case, as for 15mm/0.61” (two tack layers needs firing as for four tack layers, plus one extra for the high and low viscosity combination).

Viscosity

The reasons for this are viscosity:  

·        Annealing is done at a temperature that achieves a viscosity of around 1013.4 poise. It can be done in a range from there toward the strain point of 1014.5 poise.  Below the strain point temperature (which is determined by the viscosity), no annealing can occur.  The glass is too stiff.  The closer to the strain point that the annealing is done, the more time is required at the annealing temperature.

·        The annealing of Bullseye is already being done in the lower range of viscosities. It is possible the viscosity of the white is so high as to be difficult to anneal with the usual length of soak.

·        Although I do not know the exact viscosities of dense white and soft black at the annealing temperature, it is known white has a higher viscosity than the black.  The means to achieve less stress in the glass is to hold at the annealing temperature longer than normal.  A cooling schedule related to the length of the anneal hold is needed.  This information can be obtained from the Bullseye chart for annealing thick glass.  The rates and times apply to all soda lime glass, which is what fusing glass is. Only the temperatures need to be changed to suit the characteristics of your glass.

Slumping

The slumping of this combination of high and low viscosity glasses requires more care too.  My research has shown that the most stress-free result in slumping is achieved by firing as for one layer thicker than that used for the fuse firing.  For a tack fuse, this means firing for twice the thickness, plus one more layer for contrasting colour and style.  Then schedule the slump by adding another layer to the thickness.  This means scheduling as for 19mm/0.75"instead of as for 12mm/0.5”.  This is to account for profile, contrasting colours, and stress from slumping.  This is about three times the actual height of the piece.  

Slumping tack fused pieces of contrasting colours requires very cautious firing schedules.  These longer schedules need to have a justification.  It is not enough to add more time or slow the cooling just in case.  Excessively long anneal soaks, and slow cools can create another set of problems. 

More viscous glass needs more time at the annealing soak to an even distribution of temperature between the more and less viscous glasses.

More information about other low temperature processes can be found in my eBook Low Temperature Kilnforming.  Available from Bullseye and Etsy  

Wednesday, 13 March 2024

Heat Up vs Annealing

I am amazed by the effort put into ramp up rates, bubble squeezes, and top temperatures in comparison to annealing.  The emphasis on social media groups seems to be to get the right ramp rates for tack fuses and slumps, bubble squeezes, etc.  Most of the attention is on the way up to processing temperature.

The treatment of annealing and cooling is almost cavalier by comparison.  The attention seems to be on what temperature, and how long a soak is needed.  Then some arbitrary rate is used to cool to 370ºC/700ºF.



Annealing, in comparison to firing to top temperature, is both more complex and more vital to getting sound, lasting projects completed.  Skimping on annealing is an unsound practice leading to a lot of post-firing difficulties.

Annealing is more than a temperature and a time.  It is also the cooling to avoid inducing temporary stress. That stress during cooling can be large enough to break the glass.  This temporary stress is due to expansion differentials within the glass.

People often cite the saving of electricity as the reason for turning off at 370ºC/700ºF.  My response is that if the kiln is cooling off slower than the rate set, there will be no electricity used.  No electricity demands.  No controller intervention.  No relay operation.

Annealing at the lower end of the range with a three-stage cooling provides good results.  The results of Bullseye research on annealing are shown in their chart for annealing thick items.  It applies to glass 6mm and much larger.  It results from a recommendation to anneal at the lower end of the annealing range to get good anneals.  Other industrial research shows annealing in the lower end gives denser glass, and by implication, more robust glass.  Wissmach have accepted the results of Bullseye research and now recommend 482ºC/900ºF as the annealing temperature for their W96.  The annealing point of course remains at 516ºC/960ºF.

Bullseye research goes on to show that a progressive cooling gives the best results.  They recommend a three-stage cooling process.  The first is for the initial 55ºC/º100F below the annealing temperature, a second 55ºC/100ºF cooling and a final cooling to room temperature.

It is a good practice to schedule all three cooling rates.  It may be considered unnecessary because your kiln cools slower than the chart indicates.  Well, that is fine until you get into tack and contour fusing.  Then you will need the three-stage cooling process as you will be annealing for thicknesses up to 2.5 times actual height.

 

Of course, you can find out all the reasons for careful annealing in my book "Annealing; concepts, principles, practice" Available from Bullseye at

https://classes.bullseyeglass.com/ebooks/ebook-annealing-concepts-principles-practice.html

Or on Etsy in the VerrierStudio shop

https://www.etsy.com/uk/listing/1290856355/annealing-concepts-principles-practice?click_key=d86e32604406a8450fd73c6aabb4af58385cd9bc%3A1290856355&click_sum=9a81876e&ref=shop_home_active_4


Wednesday, 6 March 2024

Slumping Strategy

A schedule was presented for a slumping problem of a 6mm/0.25” blank.  It consisted of three segments each of a rate of 277C/500F with short holds up to 399C/750F and then a rapid rise to 745C/1375F.  The cool was done with two long holds at 537C/1000F and 482C/900F followed by cooling rates for 12mm/0.5”



My response was that, yes it was fired too high.  Not only that, but the firing strategy, as shown by the schedule, is odd. 

Strategy

The general strategy for slumping follows these ideas.

·        Glass is slow to absorb heat, and in one sense, this schedule accepts that by having short soaks at intervals.  As glass is slow to absorb heat, it is necessary to use slow ramp rates and without pauses and changes in rates.  This should be applied all the way to the slumping temperature.

·        Holds of short durations are not effective at any stage in a slumping firing.  The objective is to allow the glass time to form to the mould with as little marking as possible.  This implies slow rates to low temperatures with significant holds at appropriate stages.  This about putting enough heat work into the glass that higher temperatures are not needed.

·        This kind of firing requires observation for new moulds and new arrangements of glass to ensure the slump is complete.  Once you know the mould requirements and are repeating the layup of the glass, the firing records will tell you what rates and times to use to get a complete slump with minimum marking.

·        The hold at annealing temperature is to equalise the temperature throughout the glass to produce a stress-free result.  Any soaks above are negated or repeated by the necessary soak at the annealing temperature.  The hold there must be long enough to complete the temperature equalisation that is the annealing.

·        My work has shown that annealing for one (3mm/0.125”) layer thicker produces a piece with less stress.  This indicates that a 6mm/0.25” piece should be annealed as for 9mm/0.35” to get the best result.

The summary of the firing strategy for slumping is:

  • ·        A single ramp of a slow rate to the slumping temperature.
  • ·        Observation of the progress of the slump to determine the lowest practical temperature and hold time.
  • ·        Annealing for one layer thicker that being slumped.
  • ·        Three stage cooling of the piece at rates related to the annealing hold.

Critique

This is a critique of the schedule. For comparison, my schedule for a full fused 6mm blank would be different.

  • ·        140ºC/250ºF to 677º/1250ºF for 30 to 45 minutes.
  • ·        9999 to 482ºC/900ºF for 1.5 hours
  • ·        69ºC/124ºF to 427ºC/800ºF, no hold
  • ·        125ºC/225ºF to 371ºC/700ºF, no hold
  • ·        330ºC/600ºF to room temperature, off.

The rate of the published schedule is fast for a full fused blank and extremely fast for a tack fused blank. This needs to be slowed.  The schedule provides a single (fast) rate of heating, but with unnecessary holds.  The holds are so short as to be ineffective, anyway. There is no need for the holds on the way up to the slumping temperature.  In general slumping schedules are of fewer segments.   This is because glass behaves well with steady slow inputs of heat.

Then strangely, the schedule increases the rate to top temperature.  It does so with a brief soak at 593ºC/1100ºF.  This fast rate of 333ºC/ 600ºF begins at 400ºC/750ºF.  This is still in the brittle phase of the glass and risks breaking the glass.  The brittle stage ends around 540ºC/ 1005ºF.

This rapid rate softens the surface and edges of the glass without allowing time for the underside to catch up.  This explains uneven edges.  It also risks breaking the glass from too great expansion of the top before the bottom.

Additionally, the schedule uses a temperature more than 55ºC/100ºF above what is a reasonable highest slumping temperature.  The top temperature of this schedule is in the tack fusing range.

There is no need for a hold 55ºC/100ºF above annealing soak. It is the annealing soak that equalises the temperature before the cool begins.  The higher temperature equalisation is negated by the cooler soak at annealing temperature. So, the hold at the higher temperature and slow cool to the annealing temperature only delays the firing by about two hours.  It does not have any effect on the final piece.

The schedule is cooling for a piece of 12mm/0.5”.  This is slower than necessary.  As noted above, cooling for one layer thicker than the piece is advisable to get the most stress free result.  The annealing soak could be 1.5 hours following this idea.  Cooling with a three stage schedule reduces the risk of inducing temporary stresses that might break the glass.  Although the initial cooling rate I recommend is very similar to this schedule, it safely reduces the total cooling time.

  • ·        69ºC/124ºF to 427ºC/800ºF, no hold
  • ·        125ºC/225ºF to 371ºC/700ºF, no hold
  • ·        330ºC/600ºF to room temperature, off.

Using my kind of schedule for the first time will require peeking once top temperature is reached to determine when the slump is complete. It may take as much as an hour. Be prepared to either extend the hold, or to skip to the next segment if complete earlier. The controller manual will explain how.

 More information is given in Low Temperature Kilnforming, An Evidence-based guide to scheduling.  Available from Etsy and Bullseye


Wednesday, 28 February 2024

Refiring and Annealing

A question about re-fusing: 

I have just taken a large piece, with uneven layers out of the kiln, it went in … and fired for double thickness. A small piece has flipped and is showing the white side. … If I cover this with a thin layer of coloured powder frit, does the piece need the long anneal process when I fire it again, please. I will be taking it up to the lowest tack fuse temperature possible [my emphasis], so the rest doesn’t change too much.

When considering the re-firing of a fused piece, even with minimal changes, the schedule needs re-evaluation of both ramp rates and annealing. In this case, the major change is using a sinter firing – “the lowest tack fuse temperature possible”.

Ramp Up Rates

Previously the piece was in several layers.

  • The piece is now a thicker single piece and needs more careful ramp rates.
  • It is also of uneven thicknesses.
  • And you intend to fire to a sharp tack or sinter.

These things make a requirement for more cautious firing. You cannot fire as quickly from cold as forthe original unfired piece. Previously, the sheets could be heated as though separate. They were not hot enough to stick together until beyond the strain point. They now could experience the differential expansion from  rapid heating, which can cause breaks. 

The previously fired piece will need a slower initial ramp rate this time. This is because you are firing for a sharp tack. This is also known as fusing to stick, or sintering. It is not because of a second firing. It is because of the differences in the glass for this firing. You are firing a single thicker piece of uneven layers to a sharp tack.

Looking at Stone* and the Bullseye chart for Annealing Thick Slabs indicates that in general, the first ramp rate should be halved for each doubling of calculated thickness. This is for full fused items. However, this is going to be a more difficult fusing profile - sintering. The calculation for sintering is as for 2.5 times the thickest part of the piece. This factor of 2.5 was determined by a series of experiments that are detailed in the eBook Low Temperature Kilnforming.

You started with firing two layers of 3mm/0.125” at possibly 330°C/595°F. You are now firing the fused 6mm/0.252 piece to a sharp tack. This means you should be looking at firing for 2.5 times or 15mm/0.625”. This implies 240°C/435°F as the maximum first ramp rate. A more cautious approach is to fire to 300ºC/540ºF at a rate of 72ºC/130ºF, as most heat-up breaks occur below that temperature. You should maintain that rate to 540°C/1005°F afterwards. 

Annealing

The annealing time and cool rate will be affected in the same way as the change to a sharp tack firing. Without that fuse profile change, and no change in the profile or thickness of the piece, it could have been annealed as previously. However, changing to a sharp tack means a longer anneal soak is required. This sharp tack annealing is for 2.5 times the thickness or 150 minutes.

Cooling

The cooling rates for this piece are not the same as for the first firing. A sharp tack firing will require cooling rates of:

  • 40ºC/73ºF to 482°C/900°F.
  • 72ºC/130ºF f427ºC/800ºF.
  • 240ºC/435ºF to room temperature

This applies regardless of the fusing glass you are using, as it is the viscosity which is the important factor in cooling.  Viscosity is primarily related to temperature.


Refiring with Significant Additions.

Ramp rate

If there are additions to the thickness, a slower first ramp rate will necessary. If an additional 3mm layer is placed on top of a 6mm base for a rounded tack, you will need to schedule as for 19mm/0.75” (twice the thickest part). This will be 150°C/270°F for the first ramp rate. For a sharp tack, it will be as for 22.5mm/0.825”. The maximum rate will be reduced to 120ºC/216F for the first ramp. This shows the additional caution required for sharper fusing profiles.

Annealing

The annealing will need to be longer than the first firing. The thickness has changed with the additions of pieces for a rounded tack firing. Instead of annealing for 6mm/0.25” you will be annealing as for 19mm/0.75”. This requires a hold of three hours at the annealing temperature and cooling over three stages:

  • The first cool rate is 25°C/45°F per hour to 482°C/900°F.
  • The second rate is 45°C/81°F per hour to 427ºC/800ºF.
  • The last rate is at 90C°C/162°F per hour to room temperature.

If there are additions, plus firing to the lowest possible tack temperature – as in the example - the firing must be as for 2.5 times the actual thickness. Annealing as for 25mm/1” gives rates of:

  • The first cool rate is 15°C/27°F per hour to 482°C/900°F.
  • The second rate is 27°C/49°F per hour to 427ºC/800ºF.
  • The last rate is at 90C°C/162°F per hour to room temperature.

These examples show how dramatically later additions in thickness can add to the length of the firing to re-fire a well-annealed piece without breaking it on the heat-up. It also shows that changing the profile to a sharper tack affects the annealing and cooling times and rates.

 

*Graham Stone. Firing Schedules for Glass; the Kiln Companion. 2000, Melbourne. ISBN 0-646-397733-8

As a side note Stone’s book has become a collectable.