Showing posts sorted by relevance for query borax. Sort by date Show all posts
Showing posts sorted by relevance for query borax. Sort by date Show all posts

Sunday 3 June 2018

Home Made Devitrification sprays

You can buy a number of devitrification sprays. Some of them are lead bearing and will not be suitable for food and drink containers. Many times people apply them before firing the first time to prevent devitrification. More often these sprays are applied after a piece has become devitrified. However it is applied, these sprays are not cheap.


borax in powder form


It is possible to make your own devitrification solution. It is made from borax which you can buy from your local chemicals supplier, or sometimes as a washing powder – but make sure it has no additives! 


An example of a borax washing powder


 To make a solution, boil a few cups of water. Take the water off the boil and put in 4 – 5 tablespoons of borax. Stir and allow to stand until cool. Pour off the clear liquid and you have a saturated solution of borax. The sediment in the bottom can be added to more hot water to make more of the borax solution.  You will have to break up the remaining crystals of borax to enable suspension in the hot water.


Add a couple of drops of washing up liquid to the solution. This is enough to break the solution's surface tension. It helps to give an even distribution of the solution across the clean glass by reducing the surface tension and therefore, beading of the liquid that otherwise occurs.

You can spray this solution onto the glass, just as the commercial sprays.  Or you can brush it on as you do kiln wash on a shelf.  It requires an even application to ensure there are no streaks left on the finished glass. 

This works because borax is one of the fluxes used in glass making to reduce the melting temperature of glass batch and so serves to soften the surface of the glass enough to overcome mild devitrification.

https://glasstips.blogspot.com/2016/02/borax-characteristics.html
https://glasstips.blogspot.com/2009/06/borax-solutions.html

Revised June 2018

Sunday 26 December 2010

Longevity of Borax as a devitrification agent

It is true that Borax is water soluable. However, the borax has done its job by preventing the devitrification, so it does not matter whether it has or has not disolved, nor whether it is inside or outside.

Borax as a flux for paint in excessive quantities has the effect of corrosion on the paint or enamel it is mixed with. It is not actual corrosion, just that its effects are like that. The borax expands when wet. The expansion is very little, but over time "pops" off the paint - the time scale is 50-80 years. This happens on the inside of windows where the paint is. So it is not an inside/outside issue, just one of moisture.

But this irrelevant in kiln forming applications when attempting to prevent devitrification, or even to correct existing devitrification. The subsequent possible disappearance of the borax will not matter to the appearance of the piece. It has been reported that borax covered sushi dishes going through dishwasher cycles in a restaurant for years show no devitrification after the presumed disappearance of the borax. In fact, the proprietary devitrification solutions that contain lead would not be applicable in this food containing situation.

Other references to devitrification are:
Homemade devitrification solution
Description of devitrification
Temperature range

Wednesday 3 February 2016

Borax Characteristics

Borax is a glass making flux used to reduce the melting temperature of glass. 


It is almost colourless - grey, white, or yellowish; seldom bluish or greenish; and colourless in transmitted light.

The chemical composition of Borax is:  Na2(B4O5)(OH)4 · 8H2O

It has a hardness rating of 2 – 2.5, about half that of glass at approximately 5.5.

The melting point is 878°C. At this temperature borax dissolves numerous metal oxides. In spite of this high melting temperature, it acts as a flux reducing the softening point at the surface of the glass at kiln forming temperatures.

The specific gravity of borax is approximately 1.7, considerably ligther than glass at ca.2.5.

Borax is sparingly soluble in cold water, although readily soluble in boiling water. It is insoluble in ethanol.


Wednesday 26 April 2017

Borax solutions

A borax solution can act as a devitrification spray. That is its usual application in kiln forming.  But it can be used in other ways too.

Borax is a flux helping to reduce the firing temperature of glass. So, it can be used as a medium for powdered mica which can be painted or sprayed onto the glass. It also helps reduce the oxidisation of included metals.

Obtain borax that has no additives. Put a couple of teaspoons into water and bring to a simmer. Remove from the heat and cool. Decant the almost clear liquid off the sediment and you have a saturated solution of borax ready to use. 

If you are really parsimonious, you can add water to the crystals remaining in the pot and heat to get another saturated solution. You could do this until there was no residue, but that would get tedious.

Add a couple of drops of washing up liquid to the solution. This is enough to break the solution's surface tension. It helps to give an even distribution of the solution across the clean glass by reducing the beading of the liquid that otherwise occurs.

You can paint the solution onto the material - glass or metal - with a soft brush such as a hake brush, or you can spray it on with a pump spray container.  Be careful to clean the spray container immediately, as borax crystals form quickly.

Wednesday 17 February 2021

Recovering from Devitrification



An explanation of what devitrification is, can be found in the link.

Mild devitrification is generally a smeary appearance on the surface.  Most often this can be corrected by either removing the surface, adding a flux or putting another surface over the piece.

mild devitrification
photo credit: Bullseye Glass Co.

Removing the devitrified surface

Sandblasting and grinding are two common methods of removing the surface. If you have access to a sandblaster, this is the easiest method of removing the surface.  You can remove the surface with manual methods too.  You can use wet and dry sandpapers, starting with coarse ones and proceed through grades to at least 400grit (0.037mm).  The flexibility of the sandpapers is that they can conform to uneven surfaces that tack fusing provides, to remove devitrification in depressions as well as the high bits. Diamond hand pads and sheets do the job more quickly, but are more expensive.

Acid etching is another surface removal method. There are various etching creams on the market which will remove the surface. You need to apply and leave for a long time to allow the acid to work on the glass surface.  It is best to keep the acid paste damp to enable the acid to work over a long period.  A piece of cling film will work well.

Making a new surface

You can provide a new surface by using devitrification sprays.  There are both commercial products and do it yourself ones that work.  The do it yourself product is a borax solution.  The method for making the solution is given here.

Borax powder

You also can give the devitrified surface a new one by covering it with clear powders.  Powders sifted evenly over the surface until there is a thin covering over all the piece will give a new surface concealing or covering the devitrification.  Fine frit does not work so well, as more needs to be sifted over the surface.  This will not be applicable to tack fused pieces, as the whole piece needs to be taken to a contour or full fuse to make sure the powder or frit is completely smooth.  This will make the tack fused areas flat.

Left to right - devitrified surface, powder covering, fired piece
Photo credit: Bullseye Glass Co.

When dealing with devitrification, the whole of the surface should be treated, not just isolated areas.  Treating isolated areas will most probably leave a difference in appearance between the treated and untreated areas.  It is not worth the risk of having to fire yet again.


Dealing with devitrification usually involves removing the devitrified surface or making a new one.

Wednesday 10 April 2019

Kiln Elements - Aging



As elements age, they generally increase in their resistance. This increase in resistance decreases the amount of amperage and, so, the amount of heat given off by the elements. This explains  why older kilns sometimes go so slowly and may not reach their maximum temperature.

There are several factors which affect the longevity of elements and so have implications for firing practices.
  • ·        Contaminants such as silica which is contained in kiln wash and some glazes attack the aluminium oxide coating of the wire.
  • ·        Allowing the wires to become tightly wound increases overheating of sections of the element.
  • ·        Powders, paints and kiln wash accidentally touching the elements cause rapid corrosion of the elements if not cleaned off before firing.
  • ·        Firing close to the elements allows fumes to contact the elements.
  • ·        Subjecting elements to reducing atmospheres will age the elements quickly.  This would be done by introducing organics or oils into the kiln without venting.  Among the things that will attack the aluminium oxide coating of the elements are carbon, wax, halogens (such as chlorine or fluorine), molten metals (such as zinc, aluminium), lead glazes, alkaline metals, borax compounds.


All these elements attack the element coating.  And each time you fire the slight difference in expansion between the core of the wire and the coating creates cracks in the coating.  The exposed core forms new coating to fill the gaps.  This over time reduces the thickness of the element wire.  As the wire thins, the resistances increases, causing more fissures in the coating to occur, accelerating the aging process.

The next in this series is about how firing practices can affect the life of elements.
Firing Practices

Other relevant posts:
Nature of elements
Maintenance

Saturday 30 June 2012

Wire for Hanging

The most common wires used for inclusion in fused objects are copper, brass, nickel/chrome, stainless steel and sterling silver.


The strength of the wires – strongest to weakest - seem to be in the order of stainless steel, nickel/chrome alloy, brass, silver, copper. The metal you choose will be related to the weight of the piece, the available thickness of wire, and aesthetics.
All of these are subject to fire scale or fire stain, a blackened surface on the wire. This can be removed by abrasive cleaning of the exposed metal. The metal within the glass most often takes up the fire scale too. This can be reduced by thorough cleaning of the metal before enclosing it in the glass. Coating the metal with a flux such as borax often reduces the incidence of the fire scale too.
The techniques of cleaning the fire scale from the metal range from scrubbing and polishing to tumbling. The tumbling has the advantage of hardening the softer metals such as copper, and silver.
Copper looses much of its strength in the firing, and often needs gentle working to stiffen it. This is where tumbling is so useful.
Pure silver normally leaves a yellow stain on the glass. Sterling silver - an alloy of copper and silver – is less inclined to do this. However the exposed wire will stain the shelf and any subsequent glass unless well supported by 1 mm or more of fibre paper.
It is common in silversmithing to pickle silver to remove the fire scale after any heat work.

Wednesday 26 October 2016

Devitrification on Repeated Firing


 Devitrification is defined as the crystallisation of the glass, making it a non-vitreous substance.
Molecular level difference between vitreous and devitrified silica
from Digitalfire.com

You can see that there is not much difference between the the two states of the glass in structure, but mainly the arrangement of molecules.

The appearance of devitrification has a range of appearances from a mild smeary look through a dull surface to a crazed, crumbly aspect in severe cases. 

Mild devitrification


Medium level devitrification requiring abrasive cleaning


Causes of devitrification are related to slow changes of temperature (up or down) and most importantly nucleation points such as dust, oils, or cleaning residues. So, thorough cleaning is most important. 

Causes in repeated firings of the same piece relate to:

        Cleaning
It is important to thoroughly clean the piece before each subsequent firing.  Many times abrasive cleaning such as sandblasting is important to clean out impurities from the previous firing.  The resulting surface from any abrasive cleaning requires further cleaning with lots of clean water and a thorough drying with clean cloths or paper.

        Slow cooling or heating
Devitrification normally occurs in the range of 670⁰C to 750⁰C. This is the reason for the rapid rates of advance in this temperature range rather than other factors.  It can form both on the rise and on the fall in temperature. Slower rates in the devitrification range allow enough time for the crystallisation to begin.

        High temperatures.
Both high temperatures and long soaks can promote devitrification.  It is not just the slow rise or fall in temperature, but long periods at high temperature can lead to devitrification even though other precautions have been taken.

Changes in the composition
High temperatures and many repeated firings of the piece can lead to changes in the glass.  Some metals and fluxes are more likely than others to change composition or oxidise at extended soaks at high temperatures.  This can reduce the ability of the glass to resist devitrification.


Prevention/Correction

Prevention relates to thorough a) cleaning and b) firing rates.

All correction of devitrification relates to the modification of the surface.  If the problem is only at the surface, you can use either abrasive cleaning or the addition of fluxes to the surface, or a combination of the two. 

Where you have a mild dulling of the surface due to devitrification you can apply a flux.  This softens the surface by reducing the melting temperature of the glass and so reverses the crystallisation at the surface. The devitrification solution can be a proprietary spray such as Super Spray. Be aware that some sprays use lead particles as the flux, so are inappropriate for pieces intended to be food bearing. You can make your own devitrification solution by dissolving borax in distilled water.  When the devitrification is wide spread or deep, abrasive cleaning is required.

Abrasive cleaning can be by hand with sandpapers or diamond pads.  Be sure to keep them damp.  This keeps dust from rising, and the sanding surfaces clean for better working.  Sandblasting can be quicker, especially on uneven surfaces or where there are deep imperfections.  The surfaces resulting from abrasive cleaning need to be scrubbed clean with sufficient water, and then polished dry as for a finished piece.

It is possible to combine both these methods to be more certain of a shiny finish.  When combining, you need to do the abrasive cleaning first, then the wet cleaning and finally add the devitrification solution.

A fourth possibility is to sprinkle a fine but consistently thick layer of clear fine frit or powder over the piece.  This, when fused, provides the new surface concealing the devitrification below.  Again, this must be done at a full fuse, so it is not applicable to items you wish to remain tack fused.


However, if the devitrification has progressed to a crazed appearance, it is so deep as to be almost impossible to reverse.  The piece will also probably have developed incompatibilities. So the only real option in crazed pieces is to dispose of them.  They will not be useable in combination with any other glass. They will make any glass with which they are combined subject to devitrification and possible breakage.  These are pieces which truly cannot be cut up and re-used.

Monday 20 May 2013

Keeping Copper Inclusions from Oxidising



The colour change in the copper foil is due to oxidisation - if the copper foil is completely deprived of oxygen it stays shiny and copper coloured. If you leave copper exposed at all it will go metallic blue or even bottle green, mostly it turns a lovely burgundy red colour- an intermediate oxidisation stage.








Klyr fire or borax solutions may help the copper stay bright.

Through doing some experiments with art school students, I have found the speed of firing is critical in an electric kiln. In a gas kiln the speed is normally fast anyway and produces better results than an electric kiln. It also is a kiln with a reducing atmosphere rather than oxidising one of an electric kiln.





Summary:

The main elements in keeping copper inclusions (and by extension, other metals) bright is to keep the metal from oxidising. Two elements are important in this:
  • Keep oxygen from the metal
  • Reduce the time the metal is exposed to high temperatures

Various methods are used to keep the metal from exposure to oxygen. Some of these involve: 
  • coating the metal with fluxes to reduce the amount of oxygen in contact with the metal. 
  • using a reducing atmosphere, such as a gas kiln. 
  • placing an oxygen hungry material in the kiln with the glass and metal. 
  • coating the metal with glass powder before encasing it within the glass.



Reducing the heat exposure of the metal also indicates that firing fast would provide better results. This requires very even heating within the kiln to avoid heat shocking the glass.  This is where a gas kiln is most advantageous - it can be fired fast without breaking the glass and it has a reducing atmosphere within it.


In general, it is easier to make use of the effects of the oxidised metal rather than striving for bright metal inclusions.

Wednesday 5 November 2014

Recognising Devitrification


The appearance of devitrification varies from mild streaks as a dirty appearance on the surface, to at worst a granular surface that breaks away in small pieces. The glass will often have raised sharp corners in cases of severe devitrification.



Avoiding devitrification relates to cleaningfiring rapidly through the devitrification rangeavoiding devitrification-prone glasses, and grinding edges as little as possible.



Repairing devitrification requires the removal of the devitrified surface. This can be done by sandblasting, sanding the surface by hand, using acid pastes to remove the surface. Then the piece needs to be fired again to a fire polish.



To ensure a polished surface a devitrification solution may need to be applied. It can be a commercial product or a borax solution.  Any devitrification solution should be applied evenly.

Tuesday 25 October 2011

Copper Backings

Is it possible to to fuse copper to the back of glass?

The easy answer is - no.

But it can be done. There are a number of conditions that will help.

The copper needs to be thin and flat. It works best if you clean the copper of any oxidisation, 
and then coat it with borax or other devitrification spray that can act as a glass flux.

The fusing has to be done with a long soak to ensure the bottom of the glass is as soft as the top to assist the attachment of the copper. The devitrification solution will help soften the glass next to the copper sheet. You also have to protect your shelf from contamination by the copper sheet. This can be done by using 3mm fibre paper under the copper.

Not all attempts will be successful, showing that this process is on the edge of acceptability.
It is easier simply to glue the copper to the back.

Does it matter whether it has been fused already?”

The glass does not have to be fused prior to attempting to attach the copper to the back. If it has been fused, you need to run a slower schedule than when fusing glass for the first time. A schedule for slumping, but with a higher target temperature – at least fire polishing – will be required.

Wednesday 19 May 2021

What are enamels?




Not all enamels are equal

Enamel paints
This description refers to a paint that air dries (or with minimal heat) to a hard finish (usually gloss). Most commercially available enamel paints are significantly softer than either vitreous enamel or heat cured synthetic resins. The term "enamel paint" generally is used to describe oil-based covering products, usually with a significant gloss finish. Many latex or water-based paints have adopted the term.

Enamel paint has come to mean a "hard surfaced paint" and usually is in reference to paint brands of higher quality, floor coatings of a high gloss finish. Most enamel paints are alkyd resin based. Some enamel paints have been made by adding varnish to oil-based paint. Enamels paint can also refer to nitro-cellulose based paints. Nitro-cellulose enamels are also commonly known as modern lacquers.  These have been largely replaced by synthetic coatings like alkyd, acrylic and vinyl.


Enamel paints are used for coating surfaces that are outdoors or otherwise subject to hard wear, or variations in temperature.  A widespread application is in paints for cars. It is also used frequently to decorate or label bottles due to the low curing temperatures of some formulations.


Vitreous enamels 

Vitreous enamels are used in a variety of circumstances.  Metal signs are most frequently enamel coated; they are used in ceramics as over glazes;  and they are used on glass in many circumstances.

Vitreous Enamel is simply a thin layer of glass fused at high temperature on to the surface of a metal or glass. Vitreous Enamel can be defined as a material which is a vitreous solid obtained by smelting or fritting a mixture of inorganic materials.  The word enamel comes from the High German word ‘smelzan’ and from the Old French ‘esmail’.

The key ingredient of vitreous enamel is finely ground glass frit. Colour in enamel is obtained by the addition of various minerals and metal oxides. 

Vitreous enamel is made by smelting naturally occurring minerals, such as sand, feldspar, borax, soda ash, and sodium fluoride at temperatures between 1200°C and 1350°C  until all the raw materials have dissolved. The molten glass which is formed is either quenched into water or through water-cooled rollers. This rapid cooling prevents crystallisation. The resulting frit is ground in a rotating ball mill either to produce a water-based slurry or a powder.

At the milling stage, other minerals are added to give the properties and colour required of the final enamel. Different enamel colours can be mixed to make a new colour, in the manner of paint. Enamel can be transparent, opaque or opalescent.

More information at: 



Metal enamelling
Modern frit for enamelling steel is typically an alkali borosilicate glass with a thermal expansion and glass temperature suitable for coating steel and other metals. Raw materials are smelted together between 1,150 and 1,450°C (2,100 and 2,650°F) into a liquid glass that is directed out of the furnace and thermal shocked with either water or steel rollers into frit. Vitreous enamel is often applied as a powder or paste and then fired at high temperature. This process gives vitreous enamel its unique combination of properties. The smooth glass-like surface is hard; it is scratch, chemical and fire resistant. It is easy to clean and hygienic.  It all started 3500 years ago in Cyprus. Since 1500 BC, enamelling has been a durable, attractive and reliable material.

More information at: 


Enamels in Ceramics
Overglaze decoration, overglaze enamelling or on-glaze decoration are all names for the method of decorating pottery, where the coloured decoration is applied on top of the already fired and glazed surface, and then fixed in a second firing at a relatively low temperature.  The colours fuse on to the glaze, so the decoration becomes durable. This decorative firing is usually done at a lower temperature which allows for a varied and vivid palette of colours, using pigments which will not colour correctly at the high temperature necessary to fire the clay body.


Glass Enamels
Glass enamels are produced in the same way as enamels for metals and ceramics.  The frit characteristics are adjusted for various applications and temperatures.  This combination of finely ground frit and metals for colouring are often combined with a binder or carrier medium.  It is similar to vitreous enamel on metal surfaces, but the supporting surface is glass. It is also close to "enamelled" overglaze decoration on pottery, especially on porcelain, and it is thought likely that the technique passed from metal to glass (probably in the Islamic world), and then in the Renaissance from glass to pottery (perhaps in Bohemia or Germany). 

Glass may be enamelled by sprinkling a loose powder on a flat surface, painting or printing a slurry, or painting or stamping a binder and then sprinkling it with powder, which will adhere.  The powdered frit can be in the ceramic on-glaze composition suitable for fusing or casting temperatures, or it can be adjusted for slumping temperatures as in the traditional glass stainers’ enamels. It can produce brilliant and long-lasting colours, and be transparent, translucent or opaque. Generally, the desired colours only appear when the piece is fired, adding to the artist's difficulties.



The term enamel is applied to a wide variety of coating materials.  The range of usage is indicated, and the manufacture and applications of vitreous enamels is indicated.  The term enamel is not properly applied to finely ground coloured glass in a medium.

Wednesday 21 June 2017

Mica



What it is

Mica is widely distributed throughout the world and occurs in igneous, metamorphic and sedimentary rocks. Mica is similar to granite in its crystalline composition.  The nearly perfect cleavage, which is the most prominent characteristic of mica, is explained by the hexagonal sheet-like arrangement of its atoms.

Mica can be composed of a variety of minerals giving various colours and transparency. Purple, rosy, silver and grey colours come from the mineral called lepidolite.  


Dark green, brown and black come from biotite.  


Yellowish-brown, green and white come from phlogopite.  



Colourless and transparent micas are called muscovite.  


All these have a pearly vitreous lustre.


The melting point of mica depends on its exact composition, but ranges from 700⁰C to 1000⁰C.

Glass has a specific gravity of about 2.5, and mica ranges from 2.8-3.1, so it is slightly heavier than glass.


Tips on uses of mica powder and flakes

The naturally occurring colours are largely impervious to kiln forming temperatures.  Other added colours have various resistances to the heat of fusing. This is determined by the temperatures used to apply the colour to the mica.  Cosmetic mica is coloured at low temperatures and will not survive kiln forming with their colour in tact.



Mica does not combine with glass, but is encased by glass as it sinks into the glass surface.  You can use various fluxes to soften the surface of the glass.  Borax is one of those.  The cleaving of the mica results in only the layer in contact with the glass sticking.  The upper layers brush off.  This applies to both powder and flakes. One solution is to fire with mica on top in the initial firing and then cap for the final one.

When encasing mica exercise caution. Micas flakes must be applied thinly, as air is easily trapped between layers which leads to large bubbles from between layers of glass.  This is the result of the shearing of layers of the flakes allowing air between layers.  Although powdered mica is less likely to create large bubbles, air bubbles are often created for the same reason.  This is the reason it is most often recommended to fire the mica on top. 

Of course, one use of the mica to make complicated designs is to cover the whole area and fuse.  Then sandblast a design removing the mica from areas of the glass. You can then fire polish, or cap and re-fire to seal the mica.

Mica safety

MSDS for mica only mentions the inhalation of the dust as a risk. Mica is resistant to acid attack and is largely inert.  Inhalation of the dust is a (low level) risk.  Any significant health and safety problems relate to the coloured coatings.



Wednesday 4 May 2016

Mica - Kiln Forming Myths 23

Mica will not stick to glass unless it's capped with clear.

Almost by definition, any material that needs to be encased, does not stick to glass.

However, mica does stick to glass.  But it is only the surface that is in contact with the glass that sticks.  Mica shears into very fine sheets and particles (almost microscopic), meaning that there many layers of mica even with a thin layer.  So only a minor portion of the mica you sprinkle, sift or paint onto the glass can stick. 

It is possible to add a flux such as borax to the mica solution to soften the surface of the glass, allowing more mica to sink into and stick to the glass.

Of course you can encase much more mica than will stick to the surface.  However, you have to be very careful about avoiding bubbles.  There is so much air (relative to the volume of the mica) that bubbles in encased mica is a constant problem.  Very good bubble squeezes and supporting the edges on shards of glass to keep the glass open while beginning to slump are required.



All myths have an element of truth in them otherwise they would not persist.
They also persist because people listen to the “rules” rather than thinking about the principles and applying them.  It is when you understand the principles that you can successfully break the “rules”.




Wednesday 17 April 2019

Firing Practices that Affect Kiln Elements

The way that you fire glass and other materials in your kiln affect the longevity of the kiln elements.  Some things you can do and avoid are given here.

Venting

Even if you have the best aluminium oxide coating, the fumes that emit from glazes, paints, organics, inclusions and devitrification solutions can still attack the element through cracks in the coating. Downdraft vents are your best defence against potentially harmful fumes. Downdraft vents pull the fumes from the kiln chamber before they have a chance to damage the elements.
If you do not have a downdraft vent your next best option is to prop the lid a couple of inches until the kiln reaches 540°C to allow the fumes out of the chamber. You should also consider leaving at least one peephole out during the entire firing for the fumes that escape above 540°C.
This presents a dilemma, as the recommendation is to keep the kiln closed from 540°C upwards to protect the glass from cold air drafts.   Those who rarely fire above 800°C do not have the same problem as those who regularly fire at 850°C and above for casting, combing, and melts.  The higher the temperature, the greater the effect of fumes on the elements.  At fusing and below temperatures the effect on the elements is not as great.  Thus, low temperature firings can follow the standard practice of closing the kiln above 540°C.  Those going higher, should consider venting the kiln all the way to the top temperature to reduce the wear on the elements.

Maintain an Oxidising Atmosphere

Elements need an oxidising atmosphere to provide a long dependable service.  Subjecting elements to reducing atmospheres will age the elements quickly.  This is be done by introducing organics or oils into the kiln without venting.  Among the things that will attack the aluminium oxide coating of the elements are
  • ·        Carbon - this includes materials made from carbon and plant-based inclusions.   
  • ·        wax burnout – it is best to steam wax out of moulds to eliminate most of the wax before any burnout, as the fumes are largely carbon.
  • ·        halogens (such as chlorine or fluorine) 
  • ·        molten metals (such as zinc, aluminium).  This is a more important reason for avoiding the use of zinc and aluminium in kilnforming than the possibility of health problems.
  • ·        lead bearing paints and glazes – lead is a common component of paints, enamels and glazes.
  • ·        alkaline metals – the main one we come across in kilnforming is magnesium which produces an amethyst colour of varying intensities.  This has a melting point of 650°C and boils at 1090°C, so some fumes can develop during firings and affect the elements.
  • ·        borax compounds – used in enamel glazes and some devitrification sprays. 


If you use these materials in the kiln, you need to ensure that the kiln is well vented while these are in the kiln.

When you do have to use these elements - even when you vent - it is good practice to follow this firing by one without materials corrosive to the coating.  This allows the coating to re-form around the element surfaces after a corrosive firing.
Trying to do reduction firings in your kiln will greatly limit their useful life and is definitely not recommended.


Avoid Contaminants

Contaminants such as silica which is contained in kiln wash and some glazes attack the aluminium oxide coating of the wire.
Powders, paints and kiln wash accidentally touching the elements cause rapid corrosion of the elements if not cleaned off before firing.


Placing

Firing close to the elements allows any fumes from materials being used to affect the elements more than allowing some space between the glass and the elements.  This provides another reason to keep the glass away from the edges of the kiln in addition to the possible uneven heating of the glass.


High Temperature Firings

High temperatures with very long soak times will accelerate an increase in element resistance through the differential expansion of the inner wire and the coating. The higher the temperature, the longer the soak, the sooner the element will decrease in life. Usually short soaks work much better for the longevity of the element.  This is not such a big factor for glass kilns as it is for ceramic kilns.

The next part in this series deals with the maintenance of the elements.


Earlier relevant posts
Element Description