Showing posts with label Stained Glass in Glasgow. Show all posts
Showing posts with label Stained Glass in Glasgow. Show all posts

Wednesday 25 December 2019

Cutting Opalescent Glass


People often find cutting opalescent glass more difficult than transparent. My observation is that people exert too much pressure in scoring opalescent glass by listening for the creaking/scratching sound. 


Not all glass is made the same, even by the same manufacturer.  But all the same rules apply in scoring opalescent as transparent glass.  However, they sound different.

No more pressure should be put on opalescent glass than transparent.  Only about two kilograms (5 to 7 pounds) of pressure is required to score glass sufficiently to create the weakness that we exploit when running the score.

If you concentrate on keeping the pressure on both types of glass the same, you will hear different things.  On transparent glass you normally hear a creaking or light scratching sound and you do not get a whiteness along the score line.  If you hear same sound on opalescent glass, too much pressure is being applied. 

The same pressure (2 kilograms) on opalescent glass gives only a rumble of sound. No creaking or scratching is heard.  You can test this by placing a piece of glass on kitchen scales. Zero the scales with the transparent glass on it and score. Note the pressure you used.  Now zero the scales with a piece of opalescent glass on it. Ensure you score to the same pressure as on the transparent glass by looking at the readout on the scales.

Just as excessive pressure on transparent glass leads to erratic breaking of the glass, so it does on opalescent glass.  You will need some practice to stop listening for a sound and begin to feel the pressure you are applying to the glass. Once you do apply the same pressure to opalescent as to transparent glass, your success in scoring and breaking opalescent glass will increase greatly.

Scoring and breaking opalescent glass successfully is the same for both transparent and opalescent glass.  Use moderate pressure and don’t listen for the sound.


Feel the pressure. Ignore the sound.

Wednesday 11 December 2019

Use of Sal Ammoniac block


A block of sal ammoniac is an excellent aid to keeping your soldering iron tip (or bit) clean and able to hold a small blob of solder.

A description of what sal ammoniac is and the safety precautions in its use are here

You should place the block in such a way that it cannot slide around as you rub your iron over it.

Place your hot soldering iron tip on the block until it begins to smoke. Then move your iron slowly back and forth along the block.  Initially, the block will be black from the contaminants coming from the soldering iron bit.  As you rub the bit along the block, it will begin to clear. As it does, you can add a touch of solder and turn the bit over to check whether there are still any black spots on the face of the bit. 

If there are still black spots, return to rubbing on the block for a time.  If these spots are persistent, you can use a brass wire brush to help clean the contaminants off.  Then add a touch of solder and return to rubbing along the block.  Repeat this check until the whole bit is bright and holding a small blob of solder.

Repeat this process for the other side too.

Leave a small blob of solder on each side of the bit to protect the bit from oxidising.  This cleaning process should be done at the end of each soldering session if the bit is not clean.  But it does not substitute for the frequent wiping of the bit on a damp sponge to clean the bit as you work.  The sal ammoniac block is for cleaning persistent contaminants off the bit.

Wednesday 4 December 2019

Soldering old lead


This is normally only a requirement when repairing old windows. Usually either to join new lead to the old, or to repair breaks at the original solder joint.



You will need to clean the lead down to the bright metal at the joints. This is more than a rub with steel wool. You need a glazing nail to scratch through the oxidisation layer, the corner of your lead knife, or in cases of mild oxidisation, a brass wire brush might do. But not a steel one as that may scratch the glass and any painting.  

Do not clean the oxidisation off the lead elsewhere. That is a protective layer already formed which leads to the longevity of the came. It is best to leave oxidised lead alone rather than expose the metal to further oxidisation.

Getting to the bright metal where you want to solder the joint means the flux can act appropriately and help the solder form a secure joint.  Otherwise only a weak, cold joint is possible.

Note that you always need to use dust masks or other breathing protection.  You need to have the work area well ventilated and need to do a damp wipe down of surfaces to reduce the amount of lead oxide in the work space.

Wednesday 27 November 2019

Using Cut Running Pliers Without Cushions


Using Cut Running Pliers Without Cushions

There are a wide variety of cut running pliers for different purposes.  A description of some of them is here.


This post is to describe maintenance and use of this kind of cut runner.




The plastic covers that come with these cut runners eventually wear out.  The replacements are hard to find. There are things you can do other than buying a new pair just for the shields.

You can dip the jaws in tool coating compounds such as Plastidip.  This does not last as long as the plastic, but is easy to re-do.

You can wrap the jaws in tape.  Electrical tape, duct tape or even self-adhesive elastic bandage will do the job. Again, not long lasting, but easy to replace.

Or

You can use the cut running pliers without any covering on the jaws.  “You can’t do that. You will crush the glass!” is the response I hear.  You can use them bare. I do, and so can you.


The key is in the adjusting screw.  It is there not just to tell you which is the top of the pliers; it has a function too.  That screw adjusts the opening of the jaws to the thickness of the glass. 


A simple way to ensure you have the correct opening is to put one corner of the jaw on the edge of the glass with the jaw opening less than the glass is thick. Then tighten the screw until you feel the handles of the pliers begin to open.  Then you have the right opening for the thickness of the glass. 


It ensures you cannot crush the glass, as the jaws will not close at the centre to be less than the glass thickness. 

You also have a more direct feel of the glass without the spongy connection of the plastic. You can sense the glass beginning to bend just before the score runs due to the gentle pressure of the jaws of the cut runners on either side of the score.

Whether you use the cut runners with or without cushions on the jaws, it is important to keep the adjustment screw lubricated so you can adjust the width of the jaw opening for different thicknesses of glass.



Wednesday 20 November 2019

Soldering Iron Maintenance



“How do I maintain my soldering iron?  I see so many different methods online that I find it confusing.”

Regular cleaning

There at least two reasons for regular cleaning of the solder bit.

The first is to avoid the build-up of carbon and other contaminants which impedes the transfer of heat from the soldering bit to the solder and surfaces to be joined.


Many soldering stations come with a sponge which, when wet, is used to quickly swipe the iron's tip clean. A small amount of fresh solder is usually then applied to the clean tip in a process called tinning.



The second is to maintain the soldering bit in good condition.

The copper that forms the heat-conducting bulk of the soldering iron's tip will dissolve into the molten solder, slowly eroding the tip if it is not properly cleaned. As a result of this, most soldering iron tips are plated to resist wearing down under use. To avoid damaging the plating, abrasives such as sand paper or wire brushes should not be used to clean them. Tips without this plating or where the plating has been broken-through may need to be periodically sanded or filed to keep them smooth.


To avoid using abrasives, cleaning with sal ammoniac is recommended. This comes in a block. You rub the hot soldering iron bit on the surface. As the surface becomes hot, it begins the cleaning process, noted by the smoke rising from the block. When the block under the bit becomes clear, the bit will be clean and can be tinned as above. If this is done at the end of each session of soldering, the bit will last longer and will be ready for soldering immediately when you next need to use it.


Turn off the Iron

The most important element in the deterioration of soldering iron bits is long idle times. This is where you leave the iron on, and not in use, for a long time.

Have everything ready when you start soldering, so the iron will be used continuously, and will not sit there building up heat, while you get ready to use it again. An idle iron will keep heating to its maximum capacity and, without anything to transfer the heat to, it will start burning off the tinning after a short while. If you will not be using the iron for a while turn it off until you are ready again.


Tinning


If a bit has not been properly tinned, solder will not wet to it. Without solder on the bit heat transfer from the bit to the work surface may become extremely difficult and time consuming, or even impossible.

You will understand that proper wiping and continuous wetting is important and a lot easier than continually having to clean and re-tin the bit, especially at the risk of damage to the plated surface because of accidentally scratching, or over abrading it.

When you notice that an iron is not performing as well as it did when it was new you will find that poor thermal transfer from the element to the work is usually the cause. Improper care and maintenance and the lack of a periodic cleaning of the bit can cause a layer of oxides to form, which will inhibit the transfer of heat through the bit.

These factors are reasons why keeping a film of solder on the bit (tinning) is important in maintaining the long life of the soldering bit.



Cleaning the whole Bit.

Each soldering bit has a shank which fits into a heating collar of one kind or another.  The bit should be removed at periodic intervals and the build-up of oxides should be cleaned from the shank.  The oxides inhibit the transfer of heat from the elements to the soldering bit.  This cleaning work, of course should be done when the iron is cool.  You can use fine abrasives on the shank to remove the oxides.  You can also make a tube of fine sand paper to clean the inside of the heating collar.  This should not be done on ceramic heated soldering irons such as the Hakko.


Wattage

Another element in the maintenance of soldering irons is to have an iron of high enough wattage to readily melt the solder and be able to reheat fast enough to maintain the necessary melting temperature. An iron with enough power will reduce the strain on the heating element of the iron and the strain on the user while waiting for the iron to catch up.

For example, an 80-watt iron is sufficient to solder with, but it will continue to get hotter, as it has no temperature control until it becomes too hot for stained glass soldering, often causing breaks in the glass. An iron of this type is often used with a rheostat in order to prevent overheating while it is idling. However, this reduces the power to the iron and so increases the time needed to recover sufficient heat to continue soldering.  Also, a rheostat only slows the heat up, it does not limit it, so eventually the iron will still become too hot if left to idle.

Most temperature-controlled irons seem to be produced in 100 watts or higher. These irons attempt to maintain a constant temperature. Their ability to do so depends on the wattage and the amount of heat drained from the bit during soldering. The temperature-controlled irons are normally supplied with a 700°F bit (identified by the number 7 stamped on the internal end of the bit) and is sufficient to melt solder without long recovery times. You can obtain bits of different temperature ratings, commonly 800°F and 600°F. The 800°F bit is particularly useful when doing a lot of copper foil soldering, because it recovers to a higher temperature, allowing much more continuous soldering action.

You can also get several sizes of tips for different detail of work.  Upon first sight a fine tip would be useful for fine copper foil work.


But fine tips loose heat quickly, requiring the user to wait while the tip regains the required heat.  A 6mm to 8mm wide bit is useful to maintain the heat during the running of a long bead.  Of course, the bit is wider than the bead being run, but the solder has enough surface tension, while molten, to draw up into a bead the copper foil without spreading – unless too much solder is being applied. Really big bits of 12mm or larger are not practical – long initial heat up times, and too much area is covered, even though there is enough heat stored for really long solder beads.

Friday 1 November 2019

Effect of Heat on Sandblasted textures

This is based on Graham Stone’s work with float glass. The temperatures are applicable to float glass, and so need to be adjusted for other glasses, but illustrate the principle of how heating temperatures affect the glass.
Temperatures in degrees Celsius.

650 Blasted surface softened, evened, less "brutal".

690 Blasting still opaque but less "white"
700 Blasting becoming too sheeny but still okay for certain effects.
740 Blasting now subtle and glossy

Based on Firing Schedules for Glass; the Kiln Companion, by Graham Stone, Melbourne, 2000, ISBN 0-646-39733-8, p24

Wednesday 10 July 2019

Stand Alone Online E-Stores


Perhaps none of the existing online marketplaces fit enough of you needs to join them.  You can set up your own and make it your only online store, or you can do it in addition to other ecommerce sites that have some of the features you want.


Advantages

The advantages of your own online store relate to control and adaptability to your design needs.

You retain control of the design, layout, branding, etc., of your site.  This helps maintain your identity or brand and aligns it with your product range.

You have control of when the store is live and when it is updated. You, of course make the rules for what can be listed and how it is displayed.

You don’t have to acquire a lot of knowledge about setting up websites and online stores. Website builders offer templates and store services. You can also use professional website builders to get complete control.

You can link to Etsy or other market places from your own store.  You can funnel the traffic from these sites to own site.

Your own site will enable you to build closer relationships with your buyers. You can communicate directly rather than through intermediaries.

Disadvantages

Nothing comes free of course.  There are some disadvantages to establishing and running your own site.

An especially important element of a store is visits – akin to footfall in real life stores.  You must get people to visit.  You get the visits by making the links with people using a variety of communications.  You need to combine social media with the creation of newsletters, direct mail, blogging, etc.  These relationship building efforts are vital to get people to your website and store.

There are costs relating to hosting fees and one-off fees for the building of the website.  The online stores also charge fees in different ways, so a careful comparison of the best-looking services is important.

There will be additional administration in comparison to an online marketplace.

Questions for E-commerce Site Building
       
What are the facilities for integration of Etsy offerings into your own store? Will separate loading be required?

Is drag and drop site building supported? Is there user support or a user group to support you?

Is an integrated shopping cart available?  What are the order fulfilment assistance options?

Will the site support expanded functions as your business grows?  How adaptable it the site to changes in business?

Is the e-commerce site a market place?  How will exposure of the site to potential buyers be managed?

What is the cost for the features you want?

       
The Balance

You must decide whether the advantages of having your own e-commerce site outweighs the disadvantages in terms of traffic, time spent developing relationships, administration and cost

Wednesday 3 July 2019

Websites for Selling Craft




This is not a discussion of which site to choose, but a range of things you need to think about when considering which site to use for selling your craft items.  This includes whether to have your own e-commerce site instead of, or in addition to, a market place site.


Evaluating website offerings requires you to think about a multiplicity of things.  Many of these are listed here, although there may be a few additional things you need to think about for your products.

Recognition/Visits/Traffic

You need to think about the amount of recognition the marketplace has.  Is it the place your potential buyers know about?  Are there a lot of visits to the site?

Is it a market place offering where the website promotes the whole site and the shops within it?  Or is it a site where your own efforts to drive traffic are required? This latter element is like having your own site.

What is the competition within the site? Are there many other sellers of your kind of product? How easy will it be to distinguish your things from others?  Are there mass production sellers on the site?
       
How selective is the site in approving sellers?  This also relates to reputation.


Reputation and Products for sale

Is the site restricted to craft made items? How are mass production manufacturers eliminated?

What range of products are allowed? Is it possible to sell services, and digital products as well as physical goods?

Is the site focused on general products or arts and crafts?  What pricing levels are exhibited on the site?  Is the focus on arts-based items, or does it include bargain basement and cheap deals?

What is the level of security of transaction information offered to you and your customers?  It is vital that the site offers good security for transactions to give customers confidence in buying from the site.


Your identity

Whatever site you join, there will be many other sellers or shops.

Do you get your own shop? Or are all similar products grouped? Is there support or templates to set up your shop?

If you have your own shop what degree of control do you have?  How are images formatted?  What amount of text can be included?  What range of formats are allowed?  Does the site brand dominate, or can you have yours as the prime visual?  What number of themes are available to you?

What level of flexibility in store arrangement and titles do you get?  What number of pages do you get at the various plan levels? How much flexibility and customisation is allowed? What number of items per page are allowed? And what descriptions are allowed either in length or number of terms?

What are the restrictions on the number of products you can sell? Are you allowed discount codes?  Is there inventory control with the site? What is the assistance for order fulfilment?  How much and what features? Is there a system set up for returns? How much support is available?

Are searches restricted to your shop or for all shops on the site?  How are the meta tags used by the site? Are hyperlinks within site only or allowed to outside sites too? Are social media buttons available and with what flexibility?  Can you use your own domain name?


Connections with other e-commerce sites

Are connections allowed?  How easy is the linking? Can you link to multiple sites? Are links to social media – Facebook, etc. – allowed? And how are they managed? Can you link the potential customer to mobile phone sales?


Costs

Of course, there are always payments to be made. You need to look at the various options offered, and the charges involved in them.  If you are new to online selling or have low volume sales, it may be that higher selling fees rather than regular payments with lower transaction fees is better for you at the start.

Listing costs are normally linked to number of items you are offering in your shop. There may be refreshing fees – you must pay a fee to keep the product in the shop after a set period.

There will be continuing fees.  These may be in relation to each item – commission - either as you sell or related to the plan level you choose. Are the commission fees in addition to the listing fees?  Are there additional credit card fees?

Plan level costs are ongoing fees that may be monthly or annual. They are often linked to the length of contract between you and the site provider.  They will give different levels of item fees, and levels of features.  What are the costs of the plan levels? What benefits to they give, and do you need them?  What level of functionality do you get in relation to plan level costs?  How are the plan levels related to the volume or value of sales?

What is the ability to expand and grow through graded plans?  How and when can you move from one plan to another?





Administration

The costs of doing business online may be significant. They may also be related to your familiarity with online offerings.

The creation of an entry should be easy and flexible. You should find it easy to move around the listing form, and it should contain a significant amount of flexibility.  You should be able to make bulk changes.  It should be easy to move items and entries around your shop. 

How much control do you wish to have?  With less experience, you may want to have a lot of the listing, editing of pages, especially contact information done for you, or highly guided.   The kind of support is important. Does the site have a maker support community?

An often-unrecognised level of administration is inventory management. Does the site support that?  If the site does not have inventory control you will have to do it yourself. If you don’t have the stock to satisfy the order, you probably will lose the sale. 


Is the site easy to use?
An important general question is the ease of use for you and for customer. Test the sites out for how easy it is to find and buy an item.  Look at how easy it is for you to use the tools to list your products.


Reviews of e-commerce sites

There are sites that review the offerings of various sites to help you answer some of the questions listed above.  One I have found to be helpful is Ecommerce Guide.

The answers to the relevant questions listed here will assist you toward choosing a website that suits your needs.  It may also lead you toward considering a stand-alone ecommerce site if there are not enough positives in your review of market place sites. It may lead you to consider both.  But the more sites you have the more important it is to be able to link between them and move entries between sites.

A discussion of various things that need consideration on whether to sell on line at all is here.


Saturday 22 June 2019

Applying kiln wash

Applying kiln wash to shelves and moulds have the same requirements.


The kiln wash must be applied evenly

You can use a soft bristled brush like a hake and trail on the kiln wash in four directions – top to bottom, side to side, and diagonally left to right and right to left.


The pigmented kiln wash turns white, indicating that the shelf has been fired


You can also spray the kiln wash onto the shelf or mould. This can provide an even coating, but you must be careful to avoid puddling the kiln wash. Pause for a few seconds after each coat to allow the water to be absorbed before applying the next coat. Apply until the shelf or mould surface is not obvious through the kiln wash. There is no need to dry between coats.  The best coverage is achieved by applying all four coats in different directions at the same time.

You can use a sponge to apply to flat surfaces. A light touch is required. You need to apply in various directions as with the brush.    

Metal moulds are a special case. The water carrying the kiln wash will simply bead up or run off the metal. First clean the metal to get rid of oils and dirt – sandblasting will do well. Then you need to heat the metal to about 125C – 150C (ile., above boiling) and brush or spray the kiln wash onto the mould, one coat at a time. Return the mould to the heat source and then apply another coat of kiln wash. Do this until you have an even layer of kiln wash. Be careful not to put so much liquid on the mould that it begins to run. If this happens, you really need to start again.  Also if the metal is too hot, the water will boil off, leaving bare patched.



Apply the kiln wash thinly

You need enough kiln wash to separate the glass from the carrying surface. Any additional kiln wash will not make for a better separation, but may begin to flake off the surface and adhere to the glass more or less tightly.

The usual recommendation for brushing is one part kiln wash to five parts water. I recommend ten parts water to one part kiln wash if you are spraying the kiln wash. If you have a really absorbent surface, such as a vermiculite mould, you can reduce the water to two and a half parts water to one kiln wash. All these measurements are by volume.



The kiln wash finish must be smooth

There are several ways to smooth the surface.

You can rub your hand over the shelf or mould to remove high spots/streaks. You need to remove the dust before using though.

You can smooth the surface using a rolled up nylon stocking. This relatively open weave allows the powder to be captured in the material. It works well on irregular surfaces like a mould. Again you must clear off any remaining dust.

Another way is applicable to flat surfaces. After applying the kiln wash, but before it has dried, make sure the surface is level. Then brush or spray on a layer of hot water. This both puddles and evaporates quickly, leaving a smooth surface on thinly applied kiln wash. If the kiln wash is thick, the drying process will leave cracks as in a dried-out river bed.

Wednesday 19 June 2019

Iridescence



What is it?       How permanent is it?


“Many special effects can be applied to glass to affect its colour and overall appearance. Iridescent glass … is made by adding metallic compounds to the glass or by spraying the surface with stannous chloride or lead chloride and reheating it in a reducing atmosphere.” 

Older glass can appear iridised because of the light reflection through the layers of weathering.

“Dichroic glass is an iridescent effect in which the glass appears to be different colours, depending on the angle from which it is viewed. This effect is caused by applying very thin layers of colloidal metals (e.g., gold or silver) to the glass.”






A rainbow iridescent appearance caused by an oil film on water is seen by light being reflected from both the top oil surface and the underlying water surface.  The light reflected from these two surfaces or boundaries have slightly different wave times and so interfere with each other to create this colourful pattern.

This is also observed in soap bubbles.  Here the light is reflecting from both the inner and outer surfaces of the film.




This iridescent appearance is termed thin-film interference.  It is an occurrence in nature where there is a thin film through which light can penetrate and so reflect off the surfaces of the film.  These surfaces are termed boundaries where the light can reflect. 

The thickness of the film can enhance or reduce the iridised effect. 


At a certain thickness the light waves reflected can cancel each other out.  This is described as a destructive interference pattern as it reduces the reflection.  The phenomenon can be used to provide non-reflective surfaces.



At other thicknesses there is an iridised effect.  This is caused by the reinforcement of the recombination of the two light waves reflecting in phase or nearly so.

Control of the thickness can give the silver or the gold iridised appearance, as in the Bullseye iridised glasses, in addition to the rainbow and other effects.

The nature of the light affects the colours of the iridescence.  If the light is daylight or similar it is a combination of many wavelengths.  The different wavelengths reflecting from the “boundaries” or surfaces provide the multiplicity of colour.  If the film has variations in thickness, there will be variations in the colours created.

A diagram from Wikipedia shows how the reflections work at the microscopic level.







The permanence of the film causing the iridisation appears to be dependent on the metals used and the way in which they are deposited.


Wednesday 13 March 2019

Textured Side



There is a little concern about whether the textured side of the glass pieces in leaded and copper foiled glass should be towards the inside or outside.

The traditional advice is to have the textured side toward the inside.  This is based on the piece being used as a window. It is easier to keep the weather side clean if the smooth side is on the outside. The same thinking leads to the recommendation to allow the cemented panel to rest with the smooth (outside) down.  This minimises the thickness of the putty and so allows less water to collect on the outside horizontal leads.

If the window is not primary glazing, it does not matter which side, nor how consistent you are in placing the glass.  It becomes a matter of aesthetics – which ever way you prefer is fine if it gives you the effect you want.

There is a small visual effect if you are using transparent glass.  There is slightly more dispersion of light if the textured side is outwards. 

Placing the textured side inwards can be useful if you wish to indicate a rough surface contrasting with a smoother one.

These considerations show that the placing of the textured side is largely determined by the function of the panel and the aesthetics applied.

Wednesday 6 March 2019

Patina



The successful application of patina to solder or zinc depends on an understanding of what patina is, how it works and the methods of applying it.

What is it?

Definition:

Patina is a thin layer that variously forms on the surface of copper, bronze and similar metals (tarnish produced by oxidation or other chemical processes), or certain wooden furniture (a sheen produced by age, wear, and polishing), or any similar acquired change of a surface through age and exposure.
The chemical process by which a patina forms or is deliberately induced is called patination, and a work of art coated by a patina is said to be patinated.
The word "patina" comes from the Latin for "shallow dish". Figuratively, patina can refer to any fading, darkening or other signs of age, which are felt to be natural or unavoidable (or both).


A description of patination and the industrial process:

“In their natural state, most metals combine with chemicals in the earth or air to create metallic compounds that change their surface colour, which appear as rust or tarnish. These thin layers of corrosion are nature's patinas.”

“Among the most common procedures [to patinate] are immersion and spraying. During immersion, a piece is cleaned with sandblasting or chemicals, then dipped into a prepared liquid compound, creating an immediate change in colour. Alternatively, a piece is sprayed or brushed with a patina solution, allowed to air dry, and spritzed again. This oxidation process creates corrosion on the metal's surface that forms a layer of patina. Other methods include heat, dabbing and wiping, anodizing, and random contact patina.”

Source: Triple-S Chemical Products



A product – Black on Solder – is described and the industrial process illustrated:

“DESCRIPTION: Black on Solder is a chemical formula developed to achieve a black antique finish on Tin/Lead or Solder areas (60-40 or 50-50). This solution is a non-chromate, non-cyanide liquid solution widely used on lighting fixtures, tin wares, sculptures, gift items and other decorations. The surface will not chip, flake or peel.

“PREPARATION: Parts must be free of grease, alkalinity or acid when Black on Solder is applied. Parts must be thoroughly cleaned and deoxidized prior to blackening. … Do not use petroleum degreasing solvents that leave a residue on the surface. Rinse thoroughly with over flowing cold water to remove residual cleaners and dust. It is important that alkaline cleaners are completely rinsed off prior to blackening.

“IMPORTANT: Triple- S does NOT recommend using any sort of alcohol, solvent, acid or degreaser to clean parts prior to solution application. … Powdered cleaners such as Ajax or Comet can also be used. Use the cleaner in conjunction with a scotch brite pad and apply medium strength scrubbing to prepare the part then thoroughly rinse with fresh water. ….

“APPLICATION: Clean the part with [your chosen material]. Rinse thoroughly with water and dry. Apply [the patina] solution with a brush or spray evenly and let it react. Rinse with water and air dry or wipe with a cloth to dry the surface. [Repeat this as necessary.] It is recommended to protect the finish with a clear [varnish]”

Source: Triple-S Chemical Products

Take note:

The above quote is from a company that works with metals exclusively and is an illustration of how important cleaning is for good results in patina application.  When cleaning in proximity or on glass different processes must be used to protect the glass.

1. I never would use abrasive or corrosive materials to clean solder lines holding glass.  The most aggressive cleaner I use is that intended for fibreglass baths.
2. I never use abrasive methods in conjunction with painted glass.
3. Do not use metal or scouring pads when cleaning
4. I never use patina on any part of a panel that has painting on any of the glass. The acid will remove or damage the painting.
5. I never use patina on leaded panels at all.

I suggest these precautions should always be followed.

Cleaning
These sources indicate that a patina solution is used to form a thin layer of corrosion to the material.  To do this, the metal must be cleaned of oils, and be acidically neutral.  Cleaning is to be done with household cleaners such as powdered or cream cleaners applied with moderate pressure by synthetic scrubbing materials such as a dish scrubbing pad (sometimes called a green scrubby). The metal then needs application of running water (not a bath of water) to rinse off any residues. 

Application
The clean metal needs to be dried before application of the patination solution.  Apply with a brush or sponge, or spray and allow time for the patina to react with the metal.  Rinse with water and allow to air dry.  If wanted, the drying can be aided by wiping with a soft cloth or absorbent paper.  Often a second or third application is required to achieve the depth of colour desired.

Protect
You can then apply a varnish or wax to shine and protect the colour of the patination.  This protective process must not involve scrubbing, as that will remove the patination layer from the metal.


Do it Yourself Colourations

Goran Budija has listed a wide variety of patination formulas and methods in his publication.  What follows is a reworking of his data.

Patination of Tin

Black 1
Method:
Immerse objects in heated solution(70C). When colour is developed rinse well, dry and wax.
Formula:
5 gms Bismuth nitrate
50cc Nitric Acid
80gms Tartaric acid
1 litre water

Black 2
Method:
Immerse objects in the hot (70C) solution.
Formula:
30gms Ammonium chloride
7.5gms Molybdenum acid
1 litre water

Greyish black
Method:
Immerse objects in the room temperature solution.
Formula:
200gms Iron III chloride
1 litre water

Bronze brown
Method:
Dissolve ingredients in water acidified with nitric or hydrochloric acid. Apply to the surface(s).
Formula:
3 gms Ammonium chloride
12gms copper acetate
20ml vinegar
500ml water

Bronze colour.
Method:
Mix diluted solution of copper sulphate and cream of tartar, Rub it on an object.
Formula: equal parts of:
Copper sulphate
Potassium hydrogentartarate/cream of tartar



Patination of Zinc

Black. 1
Method:
Ingredients must be dissolved in hot water, then filtered and used.  Immerse objects and take them out immediately. Colour develops after contact with air.  Repeat if needed, rinse well and dry.
Formula:
125gms copper sulphate
60gms potassium chlorate
1 litre water

Black. 2
Method:
Immerse objects in heated solution (90 C).
Formula:
12gms copper sulphate
15gms potassium permanganate
1 litre water

Black. 3
Method:
Immerse objects in the solution. (room temperature)
Formula:
20gms ammonium molybdate
5gms sodium acetate or sodium thiosulphate
1 litre water

Greyish black.
Method:
Immerse objects in the solution (approximately 20 minutes).
Formula:
200gms Iron III chloride
1 Litre water
 
From:
Collection of formulas for the chemical, electrochemical and heat colouring of metals, the cyanide free immersion plating and electroplating, by Goran Budija.  March 2011.  Zagreb, Croatia


Summary of applicable DIY formulas and methods

Tin
Goran Budija recommends hot application to get a black patination, but this is not usually suitable for stained glass work.  Cold application will also work but needs more time and repeated applications to have the same effect as hot immersion.  Whether you choose Black 1 or 2 will depend largely on the availability of the chemicals.

A cold method of patination is the Greyish Black using iron III chloride, which is easily available. More applications and drying will intensify the colour.

To get a bronze patination of solder equal parts of copper sulphate and cream of tartar made into a paste and rubbed onto the solder will be effective, although not a copper colour.



Zinc
Black 1 seems the most useful method and formula for zinc framing of stained glass panels.  It is a cold application and immersion can be substituted by painting or brushing on the chemical solution.  Note the multiple applications required to get the depth of colour required, and the thorough cleaning and rinsing noted in the industrial process.