Showing posts with label Rates of Advance. Show all posts
Showing posts with label Rates of Advance. Show all posts

Wednesday 8 January 2020

Factory Installed Firing Schedules

Factory installed schedules are a quick starting point for the novice kilnformer.  

Many kiln manufacturers install schedules in the controllers of entry level kilns.  Some install them in larger kilns too.  They will work for for gaining basic experience of kiln operations.

However, these schedules are not universal.  Each maker programmes schedules according to their understanding of a mid-range firing schedule for various processes. 

An example of some installed programmes from Scutt


This means that when referring to an installed programme on your controller, you need to give the full schedule so others can understand.

Why?

Not only because a tack fuse schedule may be to a different temperature, but also a "fast" schedule as programmed into one kiln might be quite different to one in another.



This matters, because how fast you get to the top temperature affects what temperature you need to use. You will probably experience the difference in final effect between a fast and a slow fuse to the same temperature.  If you haven’t seen it yet, try both schedules on the same layup of glass.

You will see that a fast rate of advance to a tack fuse will give a much more angular appearance, while a slow rate of advance will give a much more rounded appearance.  This is the effect of heat workwhich is essentially the effect of the combination of temperature and time.

The longer it takes the glass to reach a given temperature, the greater the heat work.  Longer times to the top allow the use of lower temperatures. 

The consequence of accounting for heat work is that a simple top temperature cannot be given.  It is not just that kilns are different, but that the amount of heat work put into the glass will change the top temperature required for a given look.

Wednesday 16 October 2019

Heat Work is Cumulative



“…. the first fuse (contour) I brought it up to 1385°F and held for 5 minutes - it did not contour as much as I would like - do I re-fire at same temp and hold longer or go up in temp and hold same amount of time or something else?”

Observe
Of course, the smart answer is “Observe to get it right first time”.   Observation will enable you to determine when the piece is fully fired.  To observe you need only peek at 5-minute intervals to determine if the piece is as wanted. 

Know your Controller
In combination with this you will need to know your controller well enough to be able to advance to the next segment if the piece is done before the segment finishes; or how to stay on the same segment until it is finished and then advance to the next segment.

Of course, there are circumstance when you cannot or do not want to be present at the top temperature of the firing.  Then consider using the delay function to enable you to be present. This gives a countdown until the kiln starts.  The practice is fully described in this blog entry.

Time or Temperature
If you are experiencing an under-fired piece and want to re-fire it to get a better finish, the usual question is whether to fire for longer or at a higher temperature.

The response is – “Neither”.

Re-fire to the same temperature and time as before, unless you are looking for a radically different appearance.  Heat work is cumulative.  You have put heat into the glass to get the (under fired) result.  By firing it again, the heat will begin to work on the glass as it rises in temperature.  The piece, in this instance, is already a slight contour.  The additional heat of this second firing will begin to work just where the first firing did, and will additionally change the existing surface just as the first firing did.  The degree of contour achieved by the first firing will be added to equally in the second firing.  It is of course, a good idea to peek in near the top temperature to be sure you are getting what you want. More information on heat work is available here with its links. 

Rate of Advance

It is important to remember that on the second firing the glass is thicker, and you need to schedule a slower rate of advance until you get past the strain point – about 540°C for fusing glasses, higher for float and bottle glasses.

Future firings

At the finish of the second firing you will have soaked at the top temperature for twice the scheduled time.  You can use this extra time for the next similar firing, or increase the temperature slightly and keep the original firing’s length of soak. 


As pointed out earlier, observation for new layups, sizes, thicknesses, etc., is important to getting the effect you want the first time.




Wednesday 3 April 2019

Slumping Breaks

“Why does my full fused disc break when I slump it?”

There are several possibilities. The two main ones are annealing and ramp speeds.

Inadequate annealing in the fusing stage can lead to a very fragile piece when being re-heated.  If there is significant residual stress in the fused piece, it is much more sensitive to heat changes during subsequent firings whether full, tack, or slumping/draping. It is important to thoroughly anneal any piece at every firing.  If you are firing a different layup or contrasting colours and styles, you should check for stress using polarising filters.  

The slump – or drape – firing needs to be much slower in temperature rise than the fuse firing.  You now have a thicker piece which takes longer to absorb the heat evenly. 

If your piece is tack fused, it needs an even more slow rate of advance.  Sometimes this needs to be as though the piece were two to four times the actual thickness of the piece.  The more angular and pointed the tack fused elements, the greater the reduction in firing speed.  This post gives guidance on how the piece is designed and its thickness affects the rates and soaks in tack fusing. 

Further information is available in the ebook Low Temperature Kiln Forming.


Wednesday 23 May 2018

Thermal Shocking Ceramics


When firing glass in ceramic moulds, and especially ceramic pots for pot melts, you should be aware of the temperatures at which the ceramic material quickly expands and contracts.

There are refractory ceramics which are not as sensitive as the kind of ceramics we are using in most kiln work.  The ceramics we use are not refractory materials and contain, among other things, quartz and crystobalite. These two elements are important, as they have considerable effect on the survival of the pot or mould during the firing.

The effects are called inversions.  This is because the rapid expansion experienced upon the heating is reversed as rapid contraction on the cooling of the ceramic.

The first element to be affected by the heat up is crystobalite.  This element has a sudden expansion of 2.5% at 226°C.  This does not seem to be much, but compare it to the expansion of glass at this temperature - .0085% - almost 300 times that of glass at the same temperature.  And of course, the ceramic contracts by that amount when it reaches 226°C on the cooling.

The second element affecting the heat up is quartz.  There is quite a bit of this in clay.  The critical temperature for this is in the 570°C to 580°C range.  The expansion and contraction is not so great here – only 1% - but it is still more than 100% that of the glass, and in a critical range for the glass on the cooling.   



The importance of these inversions for us are to remind us to be careful at these temperatures of about 225°C and 570°C - 580°C to prolong the life of the ceramic pots and moulds that we use.  

It is probable that 150°C per hour is as quickly as we should increase the temperature when using ceramic moulds or pots.  Some thought should be given to the cooling of the moulds too.  They should not be taken from the kiln while hot nor subjected to draughts of relatively cold air.


Wednesday 18 April 2018

Rates of Advance with Soaks



I’m sure I have written about this before, but a repetition will not hurt.

I have seen many schedules with initial rates of advance interrupted by soaks.  These kinds of schedules that are written something like this:

250 degrees C to 200C, soak for 10 (or 20 or 30) minutes
250 degrees C to 500C, soak for 10 (or 20 or 30) minutes
300 degrees C to 1100C, soak for 10 (or 20 or 30) minutes
300 degrees C to 1250C, soak for 10 (or 20 or 30) minutes
600 degrees C to working temperature (1450, 1500 etc.)

When I have asked, I’m usually told that these are catch up pauses to allow all the glass to have an even temperature.  There are occasions when that may be a good idea, but I will come to those later.  For normal fusing, draping and slumping these soaks are not needed.

To understand why, needs a little information on the characteristics of glass.  Glass is a good insulator.  It is a poor transmitter of heat.  Therefore, glass behaves better with a moderate steady input of heat to ensure it is distributed evenly throughout the glass.  To advance the temperature quickly during the initial heat up stages where the glass is brittle risks thermal shock. 

The soaks at intervals do not protect against a too rapid increase in temperature.  It is the rate of heat input that causes thermal shock.  Rapid heat inputs cause uneven temperatures through and across the glass.  When these temperatures are more than 5°C different across the glass, stress is induced.  As the temperature differential increases, so does the stress until the glass is not strong enough to contain those stresses and breaks.  At higher temperatures these stresses do not exist as the glass is less viscous.

If, as is common and illustrated in the schedule above, you advance at the same rate on both sides of the soak, the soak really does not serve any purpose – other than to make writing schedules more complicated.  If the glass survived the rate of heat input between the soaks, it will survive without the soaks.

But you may wish to be a little more careful. The same heating effect can be achieved by slowing the rate of advance.  Just consider the time used in the soak and then slow the rate by the appropriate amount.  Take the example above using 30-minute soaks:

250 degrees C to 200C, soak for 30 minutes
250 degrees C to 500C, soak for 30 minutes

This part of the schedule will take three hours.  You can achieve the same heat work by going at 167 degrees C per hour to 500 degrees C.  This will add the heat to the glass in a steady manner and the result will be rather like the hare and tortoise.  If you have to pause periodically because you have gone too quickly, you can reach the same end point by steady but slower input of heat without the pauses.

But, you may argue, “the periodic soaks on the way up have always worked for me.”  As you work with thicker than 6mm glass, this “quick heat, soak; quick heat, soak” cycle will not continue to work.  Each layer insulates the lower layer from the heat above.  As the number of layers increase, the greater the risk of thermal shock. Enough time needs to be given for the heat to gradually penetrate from the top to the bottom layer and across the whole area in a steady manner.

To be safest in the initial rate of advance, you should put heat into the glass in a moderate, controlled fashion.  This means a steady input of heat with no quick changes in temperature.  How do you calculate that rate?  Contrary as it may seem, start by writing out your cooling phases of the schedule.  The cooling rate to room temperature is the safe cooling rate for the final and now thicker piece.  If that final cool rate is 300 degrees, the appropriate heat up rate is half of that or 150.  If you are in the habit of turning off the kiln at 370°C, you can use the cooling rate that is scheduled to get you there.  Normally, you would double the rate you used to get to 370°C as the rate to room temperature.  So, the rate to 370°C is the same as half the final cooling rate.

This “half speed” rate of advance will allow the heat to penetrate the layers in an even manner during the brittle phase of the glass.  This rate needs to be maintained until the upper end of the annealing range is passed.  This is normally around 55°C (110°F) above the annealing point.

Then you can begin to write the rate of advance portion of your schedule.  It could be something like:

150°C to 540°C, no soak
225°C to bubble squeeze, soak
300°C to working temperature, soak 10 minutes
Proceed to cool segments 

I like simple schedules, so I normally stick to one rate of advance all the way to the bubble squeeze.  This could be at the softening point of the glass or start at 50°C below with a one hour rise to the softening point with a 30-minute soak there before proceeding more quickly to the working temperature.

Exceptions.

I did say I would come back to an exception about soaks on the rate of advance segment of the schedules.  When the glass is supported – usually in a drape – with a lot of the glass unsupported you do need to have soaks.  The kind of suspension is when draping over a cylinder or doing a handkerchief drop.  This is where a small portion of the glass is supported by a point or a long line while the rest of the glass is suspended in the air.  It also occurs when supported by steel or thick ceramic.

The soaks are not to equalise the temperature in the glass primarily.  They are to equalise the temperature between the supports and the glass.  A thick ceramic form supporting glass takes longer to heat up than the glass.  The steel of a cocktail shaker takes the heat away from the glass as it heats faster. 

The second element in this may already be obvious.  The glass in the air on a ceramic mould can heat faster than that on the mould.  The glass on a steel mould can heat faster over the steel than the suspended glass.  Both these cases mean that you need to be careful with the temperature rises.

Now, according to my arguments above, you should be able to slow the rate of advance enough to avoid breakage.  However, my experience has shown me that periodic soaks in combination with gradual increases in the rates of advance are important, because more successful. 

An example of my rates of advance for 6mm glass supported on a steel cylinder is:
100°C to 100°C, soak 20 minutes
125°C to 200°C, soak 20 minutes
150°C to 400°C, soak 20 minutes
200°C to draping temperature

Call me inconsistent, but this has proved to be more effective than dramatically slowing the rates of advance. 

Note:
This exception does not apply to slumps where the glass is supported all around by the edge of a circular or oval mould, or where it is supported at the corners of a rectangular or square one.


Another exception is where you have a lot of moisture in a mould, for example. You need to soak just under the boiling point of water to dry the mould or drive out water from other elements of your work before proceeding.  This applies to situations where you need a burn out, of for example vegetable matter at around 500C for several hours.

In both these cases, these are about the materials holding or contained in the glass, rather than the glass itself.

Wednesday 16 August 2017

Broken Base Layers

Sometimes in fusing, the base layer can exhibit a crack or break without the upper layers being affected.  This kind of break almost always occurs on the heat up.  In a tack fuse, the top layers may still be horizontal and unaffected by the break beneath them.  If a full fuse, the upper layers will slump into the gap, or apparently seal a crack that is apparent on either side.


An example of tack fused elements on top of a previously fused base



Causes

This is more likely to be seen where there is a large difference between thicknesses.  If the base is a single or double layer and there are several layers of glass – especially opalescent – on top, there is a greater chance for this kind of break to occur.

The reason for this kind of break is that the upper layers insulate the part of the lower layers they are resting upon.  Glass is an insulator, and so a poor conductor of heat.  This means that the glass under the stack is cooler than the part(s) not covered.  A break occurs when the stress of this temperature differential is too great to be contained.


An example of  stacked glass in a tack fusing


This kind of break can also occur when there are strongly contrasting colours or glasses that absorb the heat of fusing at different rates.  One case would be where the dark lower layer(s) were insulated by a stack of white or pale opalescent glass.  The opalescent glass will absorb the heat more slowly than the dark base.  This increases the risk of too great a temperature differential in the base.


Reducing the risk of these breaks.

Even thicknesses
One way to reduce the risk of base layer breaks is to keep the glass nearly the same thickness over the whole of the piece.  Sometimes this will not give you the effect you wish to obtain.


Slow the firing rate
Another way is to slow down the temperature rise.  Some would add in soaks at intervals to allow the glass under the stack to catch up in temperature.  As we know from annealing, glass performs best when the temperature changes are gradual and steady.  Rapid or even moderate rates of advance with soaks, do not provide the steady input of heat.

This prompts the question of how fast the rate of advance should be, and to what temperature. 


Rate of advance
The rate of advance needs to take account of the thickness differential and the total thickness together.  A safe, but conservative, approach is to add the difference in thickness between the thinner and the thickest parts of the piece to the thickest.  Then program a rate of advance to accommodate that thickness.  E.g., a 6mm base with a 9mm stack has a total height of 15mm.  The difference is 9mm which added to 15mm means you want a rate of advance that will accommodate a 24mm piece.

The rate of advance can be estimated from the final annealing cool rate required for that thickness.  In the example above, the rate would be about 100°C per hour.  The more layers there are, the more you need to slow the heat up of the glass. The Bullseye table for Annealing Thick Slabs is the most useful guide here.


Firing already fused elements
If you were adding an already full fused piece of 9mm thick to a 6mm base, you could have a slightly more rapid heat up, bu not by a lot. This is because the heat will be transmitted more quickly through a single solid piece to the base glass.  It is safer to maintain the initial calculation. If your stack is tack fused, this will not apply, as the heat will move more slowly through the layers of the tack fusing much the same way as independent layers on the initial firing.



Conclusion
The general point is that you need to dramatically slow the speed of firing when you have stacked elements on a relatively thin base.  Even a two layer base can exhibit this kind of break when there is a lot of glass stacked on it.

Wednesday 5 October 2016

Rounded Bottom on Drapes

Sometimes drapes, such as the handkerchief drape over a cocktail shaker, finish with a rounded base.

The base is rounded because not enough time or heat was allowed to get it flat. The glass will benefit from a moderate, but steady advance in temperature all the way to the top temperature.  This rate will be around 100°C to 150°C per hour.  There is no need to speed the rate of advance at any time during the process of the drape.  Too rapid an increase in temperature may even give uneven drapes if there are differences in thickness or colour.  There is no need for a soak at the strain point on the way to the top temperature. Any thermal stress from the rate of advance - that some suggest may occur - will already have taken place by this temperature.

This slower rate of advance will mean that the glass will not dome so much on the drape.  It will have time both to conform to the top (which will become the bottom of the piece) of the mould support during the drape stage. 

You need to visualise what the glass is doing during the forming process. As the glass begins to drape, the glass on the support rises because it is not yet soft enough to stay flat on the supporting mould. It is only later at higher temperatures, that the glass on top of the support can conform to it.

If you watch the process – a really good practice - you will be able to tell when you have a good drape. And with this reduced rate of advance, you should have a flat bottom. And all of this may happen at a lower temperature than you expected.

Wednesday 21 September 2016

Firing Rates

Top temperature is, to a small extent, variable between kilns, even from the same manufacturer.  But it is a small part of variations in top temperature required to get the same results in differing kilns.

An example of a firing schedule

It is, more importantly, a function of how the heat is put into the glass. Firing as fast as possible to the top temperature does not allow all the glass to be at the same temperature. This is because glass is a good insulator and the transfer of heat from the top or the sides is relatively slow.  For small things, you can fire very fast, as there is a small mass of glass to absorb the heat.  But a speed of 250°C is fast enough for anything more than 100mm square and at least two 3mm layers thick.  (Thicker glass requires slower rates of advance as surprisingly do single layer projects).  The slower rate of advance allows the glass to be all of a similar temperature from top to bottom, allowing the desired effect to be achieved at lower temperatures or shorter soak times. 

For example, a slower rate of advance will give rounded edges at shorter soak times than a rapid rate of advance will require.  Alternatively, it might require a lower temperature with the same soak time.  Keep in mind that, in general, lower temperatures with slower rates of advance, give better results.

The faster your rate of advance, the more the glass lags behind the air temperature (which is what pyrometers are measuring). Therefore, a reasonable pace will give better results than the as fast as possible rate of advance. 

In short, the variations in top temperature required and length of soak is not about the kiln firing cooler or hotter as much as it is about the firing rate.

Wednesday 18 December 2013

Tack Fusing Considerations

1 – Initial Rate of Advance

Tack fuses look easier than full fusing, but they are really one of the most difficult types of kiln forming. Tack fusing requires much more care than full fusing.

On heat up, the pieces on top shade the heat from the base glass leading to uneven heating. So you need a slower heat up. You can get some assistance in determining this by looking at what the annealing cool rate for the piece is. A very conservative approach is needed when you have a number of pieces stacked over the base layer.  One way of thinking about this is to set your initial rate of advance at approximately twice the anneal cool rate. More information on this is given in this entry



2 – Annealing 

The tacked glass can be considered to be laminated rather than fully formed together. This means the glass sheets are still able, partially, to act  as separate entities. So excellent annealing is required.

Glass contracts when it's cooling, and so tends to pull into itself. In a flat, symmetrical fuse this isn't much of a problem. In tack fuses where the glass components are still distinct from their neighbours, they will try to shrink into themselves and away from each other. If there is not enough time for the glass to settle into balance, a lot of stress will be locked into the piece that either cause it to crack on cool down or to be remarkably fragile after firing. In addition, in tack fusing there are very uneven thicknesses meaning it is hard to maintain equal temperatures across the glass. The tack fused pieces shield the heat from the base, leading to localised hot spots on cool down.

On very difficult tack fuses it's not unusual to anneal for a thickness of four to six times greater than the actual maximum thickness of the glass. That extended cool helps ensure that the glass has time to shift and relax as it's becoming stiffer, and also helps keep the temperature more even throughout.

So in general, tack fused pieces should be annealed as though they are thicker pieces. Recommendations range from the rate for glass that is one thickness greater to at least twice the maximum thickness – including the tacked elements – of the whole item. Where there are right angles - squares, rectangles - or more acutely angled shapes, even more time in the annealing cool is required, possibly up to 5 times the total thickness of the piece.

It must be remembered especially in tack fusing, that annealing is much more than the annealing soak. The soak is to ensure all the glass is at the same temperature. The anneal cool over the next 110ºC is to ensure this piece of different thicknesses will all react together. That means tack fusing takes a lot longer than regular fussing.



3 – Effects of thicknesses, shapes, degree of tack

The more rectangular or pointed the pieces there are in the piece, the greater the care in annealing is required. How you decide on the schedule to use varies. Some go up two or even four times the total thickness of the piece to choose a firing schedule.

A simplistic estimation of the schedule required is to subtract the difference between the thickest and the thinnest part of the piece and add that number to the thickest part. If you have a 3mm section and a 12mm section, the difference is 9mm. So add 9 to 12 and get 17mm that needs to be annealed for. This thickness applies to the heat up section as well.

Another way to estimate the schedule required is to increase the length the annealing schedule for any and each of the following factors:
·         Tack fusing of a single additional layer on a six millimetre base
·         Rectangular pieces to be tack fused
·         Sharp, pointed pieces to be tack fused
·         Multiple layers to be tack fused
·         Degree of tack – the closer to lamination, the more time required

The annealing schedule to be considered is the one for at least the next step up in thickness for each of the factors. If you have all five factors the annealing schedule that should be used is one for at least 21mm thick pieces according to this way of thinking about the firing.

4 – Testing/Experimentation

The only way you will have certainty about which to schedule to choose is to make up a piece of the configuration you intend, but in clear. You can then check for the stresses. If you have chosen twice the thickness, and stress is showing, you need to try 3 times the thickness, etc. So your annealing soak needs to be longer, if stress shows. You can speed things by having your annealing soak at the lower end of the annealing range (for Bullseye this is 482C, rather than 516C).

You will need to do some experimentation on what works best for you. You also need to have a pair of polarisation filters to help you with determining whether you have any stress in your piece or not. If your piece is to be in opaque glasses, you need to do a mock up in clear.


Wednesday 23 October 2013

Shape of Aperture Drops


The shape of an aperture drop can be controlled by the speed of the slump. The speed at which the glass drops is a combination of heat and size of the hole. Patience is required.

Rapid drops result from high temperatures. Rapid slumps cause a thinning of the glass at the shoulder where the glass turns over the inner rim of the aperture. The pattern is distorted and the colours are also diluted. And a relatively large rim is left around the fired piece.

A much slower rate of drop spreads the strain of the slump over the whole of the unsupported area of glass. This tends toward a bowl with a gentle slope toward the bottom, reduced distortion of the pattern, maintenance of the colour densities, and a more even wall thickness all over the piece.

The slumping temperature for a shallow angled slump is less than that used for normal slumps, and takes a lot longer – up to five hours typically. This means that observation is required at intervals, say every half hour.

A starting point for the slumping is around 100ºC above the annealing temperature for the glass. So for Bullseye and System 96 the temperature is about 615ºC. If after the first half hour, there is no movement, increase the temperature by 10ºC. Check again in another half hour and if the slump has begun, leave the temperature at that level and observe at the half hourly intervals until the desired slump is achieved. Otherwise, increase the temperature by another 10ºC with the check after half an hour, and repeat until the slump has begun. After you have done the first one of these with a particular size of aperture, you will know the temperature to start the slump.

The temperature you need to use is affected by the size of the hole. The smaller the aperture, the higher the temperature will be needed. But be patient. If the temperature is increased too much, you will get the thinning of the sides that you are trying to avoid.

Additional information on aperture drops can be found in this series.

Saturday 10 August 2013

Rates of Advance

There is a lot of literature about annealing and cooling rates, as they are the most critical elements in producing a piece with minimum stresses within it. But there is not so much information on initial rates of advance.

It is possible to break the glass in heating it up by going too fast during the initial temperature rise. How fast you can increase the temperature is dependent on how even the heat is within your kiln. So any suggestions have to be tested within your own kiln and setup rather than relying exclusively on others' experience. Some of the considerations relating to the kiln are given in this blog about initial rates of advance.

So with those precautions, I put forward a suggestion based on my experience and information gleaned from the Bullseye site, education section and from Graham Stone's work. These lead me to suggest that the initial rate of advance can be twice the actual or planned first cooling segment. This rate of advance applies up to the softening point of the glass.

So this theory implies that a piece of glass 6mm thick - that might be annealed at 80ºC per hour during the first cooling segment - can be taken up at rate of 160ºC/hour to the softening point. And by extension:

  • A 12mm thick piece could be taken up at 110ºC
  • A 19mm piece could have an initial rate of advance of 50ºC/hr
  • A 25mm thick piece of glass could be taken up at 30ºC/hour.

These all depend on a number of factors:
  • how the glass is supported,
  • the nature of the shelf,
  • the composition of the mould, and
  • the kiln characteristics as well as
  • the colour combinations and
  • whether the piece is tack fused or full fused.
If the glass is heated only from the top with no ventilation beneath the shelf, more caution is required.

Slower rates of advance are indicated if 
  • the glass is supported only at a few points, 
  • or if the kiln is side fired or has cool spots.
  • If the piece is tack fused, you need to slow the rates of advance. 
  •  Consider the rate of advance for the next thicker glass as your starting point as a minimum.

Remember that these numbers can only be used as a guide in conducting you own experiments.