Wednesday 23 November 2022

Effect of AFAP Rates

 

 


This graph illustrates the effect of a rapid increase (500C/hr) in temperature on the glass.  The blue line represents the air temperature measured in the kiln.  The orange line represents the temperature between the glass and the shelf.  At an air temperature of 815°C, the temperature of the glass at its bottom is around 750°C.  This is a large difference, even though the glass is in the plastic range.  It means that the potential for stress induced by the firing rate is large.  The graph shows the temperature difference evens out during the annealing soak.

 The fast rise in temperature at the initial part of the firing where the glass is still brittle risks breakage.  The difference in temperature between the top and bottom of a 6mm piece of glass is shown to be 100°C plus throughout this initial phase up to 500°C.  Most breaks due to thermal shock occur before 300°C. This large temperature difference that occurs with rapid rates of advance risks breakage early in the firing.

 As an example, I took a piece out at 68°C to put another in.  During the time the kiln was open, the air temperature dropped to 21°C.  I filled the kiln and closed the lid and idly watched the temperature climb before switching the kiln on for another firing.  It took a bit more than two minutes for the thermocouple to reach 54°C with the eventual stable temperature being 58°C.  I had not been aware how long it takes the thermocouple to react to the change in temperature.  Yes, it takes a little time for the air temperature in the kiln to equalise with the mass of the kiln, but not two minutes.

 With a two-minute delay the recorded temperature can be significantly behind the actual air temperature.  For example, a rate of 500°C per hour is equal to 8.3°C (15°F) per minute or 16.6°C (30°F) overshoot of the programmed temperature. Even at 300°C it is a 10°C (18°F) overshoot.  This effect, added to the way the controller samples the temperatures, means the actual overshoot can be significant for the resulting glass appearance.

 This is just another small element in why moderate ramp rates can be helpful in providing consistent results for the glass.

 More importantly at top temperature, the surface will be fully formed while the bottom is only at a tack fuse temperature. This does have implications for the strength of the piece.  There will be an only tack fused structure through much of the piece, but a full fused structure at the surface.  The potential for breaking in further kilnforming or during use is high.

 In addition to the effects on the glass, there will be effects on the operation of the controller.  Controllers operate by comparing the instructions on firing rate with the air temperature recorded by the pyrometer.  In doing this the variances become smaller with time.  An AFAP firing does not give a lot of time for the controller to “learn” the firing curve.  So, the controller tends to overshoot the top temperature by some (variable) degree.  This makes it difficult to precisely control the outcome of the firing.

 There is some concern that the structure of the kiln will be affected by AFAP firings. This is a small risk.  The expansion and contraction of the kiln materials will occur whether quickly or more slowly.  It is not a major concern.  It is a concern for the glass, though.

 AFAP firings have potentially harmful effects on the structure of the fired glass leading to thermal shock and fragile completed pieces.



1 comment:

  1. Tank you for this wonderful explanation!

    ReplyDelete