Wednesday, 30 May 2018

Sal Ammoniac


There are sometimes concerns expressed about the use of sal ammoniac to clean the tips of soldering irons.  My conclusion is that there are no elements of the block that will affect the copper plating of the soldering iron bolt.  It is safe to use this as an occasional cleaning method of soldering iron bolts. This is based on the following information.

What it is
The common term, sal ammoniac, refers to the chemical ammonium chloride.  Sal ammoniac is the archaic name for it. The Romans named it from the ammonium chloride deposits that they collected from near the Temple of Jupiter Amun in ancient Libya.  It is found as encrustations around volcanic fumaroles, guano deposits and in burning coal seams. Notable occurrences include Tajikistan; Mount Vesuvius, Italy; and ParĂ­cutin, Michoacan, Mexico.
Wikipedia

Ammonium chloride is the product from the reaction of hydrochloric acid and ammonia.  Ammonium chloride is obtained as a by-product in different chemical processes.  It consists of white crystals that are also available in rods or lumps.  The substance changes directly from being solid to gas with no intermediate liquid state. The gas does not consist of ammonium chloride molecules but ammonia and hydrogen chloride. This shows that the salt decomposes easily. When stored, ammonia is continuously emitted and the substance gradually becomes more acidic.
https://www.fishersci.co.uk/shop/products/ammonium-chloride-99-6-analysis-acs-acros-organics-3/p-3586389


Safety
It is widely used in human medicines as an expectorant, diuretic, etc. and in veterinary medicines to reduce gallstones, so it is a relatively benign material in relation to human health. 

There are some hazards though.  It can cause serious eye irritation on prolonged exposure, and is harmful if swallowed.  The precautions are to avoid eating, smoking, and drinking when using it.  Use gloves and eye protection if you are using it for extended periods. If it gets into your eyes, rinse with water for several minutes. https://www.fishersci.co.uk/shop/products/ammonium-chloride-99-6-analysis-acs-acros-organics-3/p-3586389

It is highly soluble in water, and forms a slightly acidic solution. Its main characteristic that you need to protect yourself against is that it vaporizes without melting at 340 °C to form equal volumes of ammonia and hydrogen chloride gas. https://www.britannica.com/science/ammonium-chloride

The amounts of the gas are small when used to clean soldering irons, but as the gas forms hydrochloric acid in contact with moisture, you should use dust masks rated for inorganic acids.  The amounts are small and generally only cause sneezing and coughing upon contact.

The primary hazard is the threat posed to the environment. Immediate steps should be taken to limit its spread to the environment.


Uses

In addition to medicine, it is used to clean soldering irons. It has uses in jewellery-making and the refining of precious metals.  Sal ammoniac has also been used in the past in bakery products to give cookies a very crisp texture.  In some areas, particularly Nordic countries and the Netherlands, it is still widely used in the production of a salty licorice candy known as Salmiak, or Salmiakki.  Formerly it was used as the electrolyte in dry batteries.  It has uses in fertiliser as a source of nitrogen mostly for rice and wheat crops in Asia. It is also an ingredient in fireworks, safety matches, contact explosives, cosmetics and many other applications.


Conclusion

Although there are some mild safety precautions that need to be followed, there is nothing in the sal ammoniac block that can harm the copper coating of the soldering iron tip.

Wednesday, 23 May 2018

Thermal Shocking Ceramics


When firing glass in ceramic moulds, and especially ceramic pots for pot melts, you should be aware of the temperatures at which the ceramic material quickly expands and contracts.

There are refractory ceramics which are not as sensitive as the kind of ceramics we are using in most kiln work.  The ceramics we use as moulds are not refractory materials and contain, among other things, quartz and crystobalite. These two elements are important, as they have considerable effect on the survival of the pot or mould during the firing.

The effects are called inversions.  This is because the rapid expansion experienced upon the heating is reversed as rapid contraction on the cooling of the ceramic.

The first element to be affected by the heat up is crystobalite.  This element has a sudden expansion of 2.5% at 226°C.  This does not seem to be much, but compare it to the expansion of glass at this temperature - .0085% - almost 300 times that of glass at the same temperature.  And of course, the ceramic contracts by that amount when it reaches 226°C on the cooling.

The second element affecting the heat up is quartz.  There is quite a bit of this in clay.  The critical temperature for this is in the 570°C to 580°C range.  The expansion and contraction is not so great here – only 1% - but it is still more than 100% that of the glass, and in a critical range for the glass on the cooling.   



The importance of these inversions for us are to remind us to be careful at these temperatures of about 225°C and 570°C - 580°C to prolong the life of the ceramic pots and moulds that we use.  

It is probable that 150°C per hour is as quickly as we should increase the temperature when using ceramic moulds or pots.  Some thought should be given to the cooling of the moulds too.  They should not be taken from the kiln while hot nor subjected to draughts of relatively cold air.


Friday, 18 May 2018

Leading Small Circles

Putting came around small circles such as lenses and small bullions often leaves an irregular curve. There is a way to avoid this.

Use oval or round came to reduce the kinking of the leaves of the came. As there is less material at the edges of the leaves of oval came, there is less kinking than on flat came, where the thickness of the leaves is constant.

Begin to form the lead round the circle, about half way. Then take the circle out of the came and cut, at a right angle to the length of the lead, at an angle from top to bottom. The degree of the angle is not important at this stage, only that you can repeat the angle – so it must be fairly shallow and natural for you.


Put the circle back into the came and continue to form the came round it until you meet the angled cut at the beginning. Again at right angles to the length of the came, cut a repeat of the angle.


Then fold this end toward the other end. Push the two angled ends together. If they slip up and down from each other, the came is too long. Open the came and cut a sliver off.


Try again until they meet with very little “slippage”.


Then the piece is ready to put into the panel. Place the join at a lead joint so you don't have an additional solder spot.


This technique can be used for small ovals too.

Tuesday, 15 May 2018

Tin Bloom


Using float glass sometimes produces partial clouding as though devitrification were present. Although float glass is prone to devitrification, not all the cloudy film on the surface is due to devitrification.

Float glass, which these days, is almost all clear smooth glass, gets its name from the process of floating the glass on molten tin. The tin in compression gives an apparent devitrification effect which is called tin bloom.

it is different from devitrification, to which float glass is particularly subject. Devitrification sprays and solutions will not have an effect on this surface defect called tin bloom. 

When the tin layer is stretched, it does not create a tin bloom on the surface.  Therefore, it is important to have a means to detect which is the tin surface.  Always fire the glass with the tin in the same relative location to each other.  I.e., on several layers of glass have all the tin side down or all up, but not mixed. 



This example of a test by Glass Art by Margot shows the tin bloom on the outer portions of the platter where the tin side was up, causing the tin too be compressed and show.  The flatter portion of the piece did not show this tin bloom as there was not the same extent of compression. You can visit the description of the experiment here.


When forming the glass (slumping, draping, kiln carving) make sure the tin sides will be stretched rather than compressed.  Of course, you can take advantage of the tin bloom by controlling the compression of the tin layers.

Friday, 11 May 2018

Leading - Establishing the perimeter

The first thing to be established about the panel is the placing of the came that goes around the edge of the panel.

Fix your cut line cartoon to the work board.  Usually a long strip of masking tape on all the edges will be sufficient.  To establish the placing of the battens, which will form the frame for the leading process, you need to determine the spacing from the cut line.

This shows the initial battens in place and ready for the final two battens to be put in place before soldering.

To determine the size of the off-set of the battens you should cut a short piece of the came you will be using for the outside and use that as a guage.  Place the heart of the came on the outside cut line near one end and move the batten to the side of the came.  Nail that end of the came to the board.  Move the guage came to the other end of the cut line and do the same with the batten as you did for the other end.  Establish one other batten at right angles in the same way.  Then you are ready to place the cames.

Make a straight cut across the came to be used for the outside and put that trimmed end into the corner and along the vertical wood strip. The lead should extend beyond the cut line to accommodate the length of the upper horizontal came. The minimum length must be longer than the width of the perimeter came that will butt against it. If it is even longer, the extra can be trimmed off after the leading is complete or after soldering.


Next butt a trimmed piece of perimeter came along the horizontal wood strip. This one should be shorter than the cartoon. It should be half the width of the perimeter cames to allow the vertical came to butt against it. The reason for having the vertical cames running from bottom to top is that there is a fraction more strength in the heart of the came going all the way to the bottom of the panel, rather than resting on the flanges of the came.



This is how the finished perimeter cames will appear:





These perimeter cames should be held in place with horseshoe nails. Try placing the nails only where a lead line will be soldered in order to cover any nicks the nails might make. Alternatively, you can place the nails at the ends of the perimeter cames to keep them from sliding vertically or horizontally.


If you want to have mitred corners, this post will show you the method.

The next stage of placing the first pieces of glass is shown here.

Leading acute angles

Most of us like flowing lines in leaded glass windows, but these often give very acute angles to be leaded up. One way is to avoid creating intersections by using passing cames.  

But, if the cartoon does not allow for passing cames in acute joints, you have to consider how to cut the came to butt well against the next came. The easiest, but most time-consuming method is as follows:

Determine what the length of the came must be to reach the end of the joint.

Mark your lead there.






Determine what the shortest part of the came will be at the joint and make a faint mark there too.

Cut the came at the first (longest) mark.

Use your lead dykes to cut the heart out of the lead, leaving only the flanges. This is done from the end to just beyond the faint mark you made to indicate the shortest part of the joint.




You then need to smooth the two flanges where the heart was. You can use a fid or your lead knife to draw over the rough interior of the flanges. This enables the flange to be inserted below the came already in place, or to slide the new came over the modified came.







You can trim the upper came flanges immediately to conform to the angle of the joint or do it when the whole panel is leaded. Make a mark with a nail or your lead knife along the edge of the un-modified came. Then raise the flange and use your lead dykes to cut the flange along the line. Fold the flange down to butt against the passing lead and it is ready to solder.







Monday, 7 May 2018

False Lines in Leaded Glass

False lines are used in leaded glass where the design calls for an angle that cannot be cut into the glass. This includes right angles and even more acute angles. E.g., the petals of a fuchsia flower. 


The design would call for an angle of about 60 degrees. This is impossible to achieve through hand cutting. So the glass is cut in a curve and the cames on the side and bottom of the petal have their hearts cut out so they overlap each other. 

In the example above, the red petal points would be cut rounded, so that the clear glass below can be rounded as well.  The came or foil is extended beyond the glass to give the visual points required.

The overlap is then trimmed to the shape of the outside of the petal. When soldered, the appearance is of the glass being cut at the angle required for the flower.



At other times, the requirement is for a line to go into a piece of glass, but not all the way across. As in this stained glass panel by Justin Behnke.  The hanging lines are those on the lower left of the panel, giving a great flow to the whole.


Again you cut the heart out of the came, and overlay the smoothed lead onto the glass. You can use just a little silicone to hold the lead in place until you finish cementing. After this you can lift the piece of came and use silicone or epoxy resin to firmly attach the came to the glass. You do not want to do this before cementing as any excess of glue will be made dirty by the cementing process and be very difficult to clean up.


There are also times when you may want to have a silhouette, you can cut it out of lead foil and solder it into place. This allows intricate shapes to be made when a dark representation of the shape is required. If the panel can be seen from both sides, the overlays should also be on both sides. These should be glued to the glass just as for cames.

Further information on removing the heart of lead came are given in this post on leading of acute angles.

These principles can be applied to copper foil too.