Wednesday, 27 September 2023

Homemade Glass Powder

Summary of a question: Frit made in an electric coffee grinder and cleaned with magnet still produced black specks in the finished piece. What’s happening?

 

 Most coffee grinders use stainless steel blades. Most culinary stainless is not magnetic. So, you are left with flecks of steel in your powder that the magnet cannot remove.

 My experience with homemade powder has not been positive. This has led me to buy powders. But I still use home-made frit. You can wash and sieve out the powder and steel particles at the same time into a bucket or basin. This will leave you with clean frit from fine to as coarse as you want.

 Do not put the residue down the drains. It will block your drains after a time. Instead, you can let the glass settle to the bottom of the bucket and pour off the clear water. Let the remaining water evaporate, and wrap up the sediment for waste collection. Or if you have a garden, you can empty the water and sediment onto the ground. It makes for good drainage over time.

 

The contamination in home-made glass powders make it best to buy powders and make your own frit.

  

Wednesday, 20 September 2023

Flows

 

Credit: Marcy Berman

I have not had much success [with] the Patty Gray mould despite using the recommended firing schedule. I always have holes or bubbles and the edges are not smooth.

The schedule for Oceanside was:

  • 111°C/200°F per hour to 537°C1000°F for 15 minutes
  • 167°C/300°F per hour to 662°C/1225°F for 30 minutes
  • 195°C/350°F per hour to 798°C/1470°F for 20 minutes
  • 9999 to 510°C/950°F for 120 minutes
  • 55°C/100°F per hour to 371°C/700°F off


 Your picture shows a bottom view of the piece - made of cullet pieces - as fired. Two large bubbles show to have been created from the bottom rising through the glass to the top.

 Although a long bubble squeeze will not prevent this, it will help to reduce the number of bubbles, and especially large ones. Because of the number of pieces and the thickness of the glass put into the mould, a longer bubble squeeze would benefit this piece.

 The bubble squeeze can be as you have done this – at a single temperature – with a soak. In this case, I would have used 60 to 90 minutes as the soak.

 The other bubble squeeze method is to start the squeeze about 55C/100F below the top of the bubble squeeze. Most people use a soak of about 30 minutes there. They then proceed at a rate of between 30C/55F and 55C/100F to the top of the bubble squeeze and soak there for another 30 minutes. The rates and soak times will vary according to the thickness or complexity of the piece.

 I dispense with the soak at the beginning of the bubble squeeze on the grounds that at 610/1130F so little movement will be created that it is a waste of time. I would prefer to have a slower ramp rate to the top temperature and a longer soak there. I know the glass will be moving at those temperatures. Many people find the soak at the beginning of the bubble squeeze successful.

 The schedule to the top of the fuse is faster than the rest of the schedule. When I want a piece to flow, and especially, to fill gaps, I slow the rate. In this case a rate of between 100C/180F and 167C/300F would be slow enough to allow the glass to flow to fill gaps.

 I want to ensure the glass has enough time when it is flowing most freely at the top temperature to level out. This requires scheduling a longer soak at the top and observing how well the glass is levelling out. If more time is required you can add it on the “run,” and advance to the next segment when the surface is as wanted. Read up in your kiln manual how to do both these things.

 Yes, the rate is one which will enable devitrification to form on flat glass. The soak at top temperature is even more likely to promote it. However, as the glass is flowing, less devitrification has an opportunity to form. The crystallisation – which is what devitrification is - of the glass takes time to form. The movement of the glass surface is sufficient to reduce the formation of those crystals. It is of course likely there will be some devitrification, but not as much as the slow rates and long soaks would lead you to think. 

 But for these flows there always is the possibility of devitrification. You have to plan a method of removing it. Unless the surface is very flat, grinding the top is not a fast way to remove it. Sandblasting is a quick way to remove devitrification. Another way is to sift a thin layer of clear glass powder over the surface. This is an increasingly popular way to deal with devitrification for those without access to sandblasting facilities. When fired again, the powder melts and forms a new shining surface. The piece will need to be fired fire again whether sandblasted or covered in glass powder.

The summary for flows:

  • Slow down to top temperature.
  • Give sufficient time there to get the flow needed.
  • Observe the progress as you near the top temperature.
  • Extend the soak or advance to the next segment when the surface is smooth.
  • Anneal soak for the calculated thickness.
  • Use a three-stage cool – as outlined in the Bullseye chart for annealing thick slabs - to ensure no temporary contraction stresses are created.
  • Accept there will be devitrification.

Wednesday, 13 September 2023

Wet shelves

 "Was the shelf completely dry? I’ve had pieces practically crumble from a wet mold or shelf."

There is a lot of speculation about wet shelves causing problems. And not just this one. The reported problems centre around large bubbles and glass sticking to the shelf. Generally, the dampness is the result of applying kiln wash. Although the mould or shelf can be damp for other reasons too.

Kiln Wash

I assure you that kiln wash is dry long before the glass sticks together. It is dry before the glass forms a seal to the kiln shelf or mould. The moisture has sufficient time and space to move from under the glass during moderate first ramp rates.

There is a precaution about wet shelves and moulds, though. You need to be careful in placing glass on top of wet kiln wash. It is possible to scrape kiln wash off areas of the shelf when placing the glass. So, the glass must be placed directly onto the supporting surface without any subsequent movement.

Wet Moulds and Shelves

However, if it is the mould or shelf which is wet, rather than just the dampness from kiln wash, different considerations apply.

If a mould is wet, it will need days of air - and then careful kiln - drying before using. It is best to avoid getting shelves and moulds wet. Washing or soaking of these items is not recommended.

The difficulties relate to the nature of wet porous structures. Not only is there free water in the structure of the mould/shelf, but there is also chemical water. Free water is what makes things feel or look wet. Chemically bound water is molecules of water lightly bonded to molecules of the structure. An item can appear to be dry and still contain this chemically bound water.

Both need careful removal. Air drying for up to a week is good for removing the free water. If you do not want to wait that long, you can kiln dry. But this needs to be done carefully. A slow ramp to just under the boiling temperature of water is required to allow the water to evaporate without creating steam. This rate should be less than 100˚C/180˚F per hour. The length of the soak needs to be related to the size of the piece and how wet it is. But one hour is a minimum.

Then another slow ramp needs to follow to remove the chemically bound water. This temperature is around 250˚C/480˚F. Hold that temperature until no fogging of a mirror or glass held above the open port occurs. This will ensure the mould is completely dry and free of the chemically bound water too.

Conclusion

The best advice is to avoid wetting shelves or moulds. It takes a lot of care and time to get them completely dry. The dampness created by applying kiln wash is easy and quick to remove. It can be done during a firing with a moderately slow rise in temperature to 250˚C/480˚F or beyond.

 

Wednesday, 30 August 2023

Glue in Kilnforming

 

There is some general guidance on using glue in kiln forming processes.

Avoid Glue Altogether

Do not use glue of any kind if at all possible. First look at other ways of stabilising the pieces. You can place clear frit or powder around or under the unstable pieces. Of course, if you are firing to less than a contour fuse, this will show. If the pieces are rolling, you can grind a flat spot to keep them stable.

Use Minimum Amounts

Use as little as possible if there is no other way to stabilise the pieces until you get them to the kiln. Use weak glues. Dilute the glues if water based. Place only a small dot of glue at one place.

Use Care in Placing

Place the glue at the edge of the glass pieces, not underneath. This allows the glue to burn out cleanly. Placed in the centre, the glue burnout is trapped under the middle of the glass. This leaves a black mark or a big bubble.

Avoid Glue with Additives

Use no glue containing additives. Many of these additives will remain after the adhesive part of the glue has burned off. These will promote devitrification.

Some Popular Glues

PVA also known as wood glue, white glue, carpenter's glue, school glue, Elmer's glue in the US, or PVA glue. This boils at 112°C/234°F.

Super glue and other cyanoacrylate glues have a boiling point 54-56°C (129-133°F).

Lacquer and hair spray have boiling points around 189°C/372°F)

Aloe vera gel has an ignition point of about 232°C/450°F. So, its boiling point is even lower than CMC.

CMC (carboxymethyl cellulose) includes wallpaper paste, Vitragel and most fusing glues. These have boiling points around 260°C –270°C (500°F –518°F).

Xanthan gum is a thickener sometimes used as a kilnforming glue. It boils at 311°C/592°F.

Proprietary kilnforming glues are generally without additives and diluted from the concentrate with demineralised water. They also boil off in the same range as CMC.

All commonly available glues evaporate well below the “sticky” range of glass. You cannot rely on them to hold the glass in place until the glass tacks together with the heat.

Quickly fired glue - wet or dry - boils. Sometimes with enough force to move the glass significant distances. So, slow down the initial ramp rate.

The general observation is that if the glass will not stay in place without glue, it will move during the firing.

Glue is only useful to stabilise pieces in moving the whole assembly to the kiln. Where possible, build the piece in the kiln without glue at all.

Best of all, use no glue.

Sunday, 27 August 2023

Coe and compatibility




From time to time you will see the statement:

“CoE is the determinant of compatibility”

This is Not True!  

I wish I could come up with something simple to counteract this CoE fallacy, but glass is complicated and I can’t think of a snappy phrase to help.  To understand why the statement above is false, some background on what CoE does mean and what range of temperature it applies to is important.

The coefficient of expansion can be a measure of either linear or volumetric expansion.  It is most often conducted over the range of 20°C to 300°C.  The result is expressed as an average over this range.  If there are variations in rates of expansion, they are absorbed in this coefficient, ie., average.  The measure is of the part of one metre the material expands for each degree Celsius increase in temperature.  In the glass community this coefficient is expressed as two digits such as 83 which represents the expansion of glass by 0.0000083 of a metre for each degree Celsius change in the measured temperature range.

Note the temperature range over which this is measured – up to 300°C.  This coefficient works well for crystalline solids, but not for glass.  Amorphous solids do not have linear expansion rates throughout the working range of temperatures. Room temperature to 300°C is not a critical temperature range for glass.  After all, many of us turn the kiln off around 370°C.  This means that the CoE measured up to 300°C is not really relevant to us, as we have discovered that the expansion rates for 6mm or less thick glass are not critical below 370°C.


Annealing range
The CoEs at annealing temperatures – the critical range for glass -  are in the 400 to 500 range.  It is in the annealing range – generally about 45°C above and below the annealing point of the glass – that CoE is most important.  The annealing point is above the now popular, but lower, annealing soak temperature. This is where the glass is soaked to obtain a temperature with a differential of no more that 5°C throughout the glass.  The practice has become to do this temperature equalisation at the lower portion of the annealing range.  Often this is only 10°C above the lower boundary of the annealing range. This gives a shorter cool and increases the density of the glass. Do not confuse annealing point with the annealing soak. They are not the same.

Critical temperature range for CoE
The Coefficient of Expansion is more important at the glass transition point. This is the temperature at which the molten material becomes a slightly flexible solid. The CoE and the viscosity interact in this range.  It is critical, as the opposing forces of viscosity and CoE must balance.  The CoE is adjusted by the manufacturer to create this balance.  It shows that CoE is dependent on the viscosity of the glass.  And the characteristics of each colour must also match all the other glass in the range of tested compatible fusing glass. This is not a simple thing to do.  If it were, there would be lots of companies doing it.

Experience of moving to a single CoE for fusing glass
The Bullseye experience of attempting to achieve compatibility across a range of glass in the early days of making fusing compatible glass showed that less compatibility was experienced when the colours had matching CoEs. Lani Macgreggor describes this experience well in this blog, “Eclipse of the Fun”

An expert’s explanation
A Bullseye article by Dan Schwoerer - possibly the major expert on making compatible glass - on achieving compatibility through compensating differences is the key to understanding the balancing of CoE with the viscosity.  It is on the Bullseye site as Tech Note #3.

There is a more impassioned description of matters relating to compatibility in five linked blogs by Lani Macgregor in the To BE or not BE blog.


Manufacturing to a range of CoE
Spectrum long ago stated that the CoE of their glass ranges up to 10 points  to achieve a compatible range of fusing glass.  This is probably true for every manufacturer of fusing compatible glass. 


Why CoE is NOT the determinant of fusing compatible glass
The things that mean CoE cannot be the determinant of compatible glass are:
  • ·        The coefficient is for an inappropriate temperature range for glass.
  • ·        The critical temperatures for expansion are in the annealing range, for which there are no widely published figures.
  • ·        The expansion rates need to be adjusted to match the viscosity in this annealing range.
  • ·        A major manufacturer has indicated their glass, known by the CoE of its fusing standard glass, has a 10-point range of CoEs within their fusing range.



It is not true that CoE is a determinant of compatibility.

CoE is an inappropriate number to indicate compatibility.  It does not guarantee compatibility.  It is a suspiciously accurate number leading people to erroneously believe any glass labelled with a given number will be compatible with any other with the same number. 


Other blog posts on CoE:
CoE does not determine critical temperatures: 

Demonstration that CoE does not determine annealing or fusing temperatures:

Note on the physical changes at annealing

Absence of any correlation between specific gravity and CoE:

Compatibility of Glasses with the Same CoE



Questions such as “How compatible are Wissmach W90 and Bullseye?” are asked from time to time.  This does show some awareness that Bullseye may not be Coe 90 and that CoE does not equal compatibility.  The same question may be asked about whether Youghiogheny Y96, Wissmach W96 and Oceanside are compatible with each other.

What is CoE
It is important to know what CoE means before the question can be answered.  It is a measure of average expansion from 20°C to 300°C.  This is suitable for crystalline materials as their low temperature expansion rates can be projected onto the behaviour of the material until near molten temperatures.  However, it is not suitable for non-crystalline materials, such as plastics or glass, as their behaviour is much more unpredictable as the temperature rises.  Measurementsof CoE have been made of glass at the glass transition temperatures which show at least seven times greater expansion near the annealing temperature than at 300°C. 




An extended essay on compatibility written by Lani Mcgregor is here


Compatibility Tests
The degree of compatibility is uncertain between different manufacturers.  Each manufacturer will take their own way toward balancing the viscosity with the CoE.  While they can say their glass has similar characteristics to another manufacturer’s glass, they cannot guarantee compatibility.

When using glass from different manufacturers together, the best advice is to test the glasses yourself for compatibility. Do this before you commit to the project.  Bullseye notes how they do their stress tests on the education section.  I have been unable to ascertain how other manufacturers test for compatibility within their range of fusing glasses.  Another simple method of testing for stress is here.

There are reports that W90 and Bullseye work together and others that say they don’t.  There are those that say the 96 CoEs work with Oceanside, and those who say they don’t. Testing for yourself is the only way to know what works.

Scale
It seems that combining different manufacturers’ glasses may work at smaller scales, but less well at larger.  Since very few people test for compatibility before, or after, when combining different manufacturer's glasses, they don't know whether their pieces are showing signs of stress. Just because the pieces do not break immediately does not mean they are compatible or stress free. 

Size, Shape and Quantity
You should also note that the relative sizes and shapes of the combined glasses effect the survivability (rather than compatibility) of the piece.

Shape
The shape of the main piece has an effect.  Circular or broad ovals can contain the stress much more easily than a long rectangle or a wedge-shaped piece.

The same applies to the pieces added.  Pointed pieces concentrate the stress more than rectangular ones.  The stress from circular additions are easier than rectangles for the base piece to hold.

Placing
Where you place the additions is important.  Anything placed near the edge of the base is more likely to cause enough stress that it can not be contained and so the piece breaks.

Mass
How much of another manufacturers’ glass are you putting on the base?  The bigger the area or the thicker the piece(s) the less well the base will be able to hold the stress before breaking.





CoE Useage

Does anyone know what CoE means?

·         First the proper abbreviation is CoLE.
·         This means Coefficient of Linear Expansion.
·         A coefficient is an average.  This number may be exact at a given temperature, or an average over a range.
·         Linear is the length.  
·         Expansion is measured in fractions of a metre e.g., 0.0000096 metre.
·         The coefficient is given as the average amount of expansion per each degree Celsius.
     The temperature range used is 20C to 300C.  Expansion characteristics vary greatly at higher temperatures.

So CoE is the average amount (in metres) that glass expands for each degree (Celsius) increase in temperature from 20C to 300C. 

Whether you call it CoE or CoLE is immaterial, as it still does not equal compatibility.

It does not measure viscosity. Viscosity is a (possibly the major) element in making a range of compatible fusing glasses.

It does measure expansion rates, but up to 300C only.  It does not tell you how glass expands above that temperature.  Note: it does not behave in a linear pattern as crystalline materials do.

The CoE must be adjusted to match the viscosity to achieve compatible glass.  Spectrum has stated that their glass has a range of CoE of at least ten points to make compatible fusing glass.  Bullseye have stated their range to be 5 points. They also have indicated their base glass is nearer to 91 than 90.  

The only constant required in fusing glass is compatibility

CoE varies within each manufacturer’s range of fusing compatible glass to match the viscosity. And remember the CoE of glass at the critical annealing point is  higher than the low temperature expansion rate. See this post for details.

Viscosity varies according to the materials used in the colouration of the glass and their proportions, requiring the glass manufacturer to make adjustments in CoE to get compatible fusing glass.  More information here.


CoE does not mean compatibility.  It does not measure volume expansion at the glass transition point.  It does not measure the most important element – viscosity.  It is not even the correct term for the measure – CoLE is.

Since CoE does not mean a fusing compatible glass, its continued use can lead people (especially novices) to believe the simple number means any glass labelled with that number will be compatible with others so labelled.  This leads to unexpected incompatibilities for newcomers to the field.

My plea is: STOP USING COE TO MEAN COMPATIBILITY.

What can you use instead? It is easy – use the manufacturer’s name.  Where the manufacturer is making more than one range of fusing compatible glass use the manufacturer’s nomenclature.

Please: STOP USING COE TO MEAN COMPATIBILITY.




"CoE Equals Compatibility" - Kiln Forming Myths 10

CoE equals compatibility.


This is as persistent myth.  CoE is an abbreviation for Coefficient of Linear Expansion.  It is not an abbreviation for Compatibility.  

Apparently, CoE is used by manufacturers of glass that is being marketed to capitalise on the popularity of fused glass without the necessity of carrying out the testing and quality control required to ensure compatibility.  It is also used as a marketing device by wholesalers and retailers possibly to make greater sales.  It is used by individuals who have been lead into sloppy thinking about the materials they are using.

There are several facts to reinforce the assertion that CoE does not equal, nor is a shorthand for, compatibility.

·         Glass marketed as CoE90 or CoE96 has to be tested by the user.  Many users have often found that the compatibility with their other glass is suspect and inconsistent. This comes from breakages that occur with one sheet of glass but not another.

·         The System 96 range was made by two glass manufacturers who had testing and quality control to ensure their whole range is compatible.

·         Uroboros makes fusing compatible glass that many claim to be compatible with Bullseye.  In general, that is the case.  But many have found that it is important to test the compatibility of the glasses from Uroboros and Bullseye against each other before committing to a project, as the compatibility is not (and cannot) be guaranteed.

·         Not all float (window) glass is compatible between manufacturers.  Even the coloured glass is marketed with a range of 6 CoE points.  And some float glass is not compatible with the accessory glass. There is even a float glass that has a CoE of 96, but it is nowhere near compatible with System 96 glass.

·         There are physical reasons too.  Coefficient of Linear Expansion is tested as the average expansion between 20°C and 300°C.  This is the brittle range for glass.  We are much more interested in what happens at the glass transition point – the small range of temperature where the glass changes from a viscous liquid to a solid – generally between 480°C and 530°C. 

·         At the glass transition there is a surprising (to me) reduction in the CoE before a rapid rise.  This variation is influenced by the viscosity of the glass.  Also, at this temperature the CoE is much higher than at the measured region and cannot be taken as a guide to what is happening at the transition point.

·         In the early attempts to make compatible glass for fusing, it was discovered that the closer to the same CoE the glass was made, the less compatible it became.

·         Viscosity is the important element in the making of compatible glass.  The change in viscosity at the glass transition point must be balanced with the expansion characteristics of the glass.  A more viscous glass requires to be balanced by a different CoE glass than a less viscous one. Thus the CoE is being adjusted – not the viscosity – to balance the forces within the glass.

·         Finally, I believe the CoE of Bullseye’s clear glass is actually 90.6 rather than 90, so if we are rounding, Bullseye might be called CoE91. 

Whether the clear CoE90 or CoE96 of other manufacturers is the same as the Bullseye, System96, or Uroboros is not the relevant point.  The relevant point is whether it is compatible.  Whether these other companies have the quality control to ensure all their glass is compatible with the claimed fusing glass without further user testing is the essential point.  At this time, it appears that they do not have that capacity.  So, those using glass marketed as CoE90 or CoE96 will need to continue to test for compatibility with each sheet they use.

Other posts on Compatibility are here:
Is Coe Important?
What is Viscosity?
CoE varies with temperature
Defining the glass transition stage

All myths have an element of truth in them otherwise they would not persist.

They also persist because people listen to the “rules” rather than thinking about the principles and applying them.  It is when you understand the principles that you can successfully break the “rules”.

Mixing COE

Our use of Coe as an equivalent for compatibility can lead to difficulties. The only compatibility that can be relied on is that given by the manufacturer. No manufacturer can attest to the compatibility of another manufacturer's glass. They can only verify their own.

So, if you mix manufacturers' glass even though advertised as the same COE, it does not make them compatible. There is much more than expansion rates that goes into compatibility. You need to test different manufacturers' glass against each other before you use it.

These are notes on aspects of compatibility.









Is CoE Important?


CoE is more important to the manufacturer (in combination with viscosity) than to the kiln worker. It has gained a heightened profile, as it has been used as a shorthand for compatibility. So it is important to know what CoE is and what the numbers mean.

During heat transfer, the energy that is stored in the intermolecular bonds between atoms changes. When the stored energy increases, so does the length of the molecular bond. As a result, solids typically expand in response to heating and contract on cooling; this response to temperature change is expressed as its coefficient of … expansion. 

The ... expansion coefficient is a thermodynamic property of a substance. It relates the change in temperature to the change in a material's linear dimensions. It is the fractional change in length [metres] per degree [C] of temperature change [expressed as a two digit whole number]. 

Most solids expand when heated. The reason for this is that this gives atoms more room to bounce about with the large amount of kinetic energy they have at high temperatures. Thermal expansion is a relatively small effect which is approximately linear in the [absolute] temperature range.”


What does CoE mean?

There are at least two types of expansion with increasing temperature. One is volume expansion and the other that we are more interested in, is the linear expansion. “The Coefficient of Linear Expansion of a substance is the fraction of its original length by which a rod [or sheet] of the substance expands per degree rise in temperature.” Source 


What do the numbers mean?

The numbers attached to a CoLE -usually referred to as CoE – are an expression of the average amount that a material expands per degree over a given temperature range. The standard temperature range is 0ºC to 300ºC and the unit of length is one metre. They are expressed as a two digit number times 10 to the power of -6. That means the two digit number really has 6 decimal points in front of the whole number. So a CoLE of 85 means the same as an expansion rate of .000085 metres per degree C; or .0085mm/ºC.

However the rate of expansion is not a straight line when graphed against higher temperatures. The ranges in which kiln formers work show an erratic and much higher rate of expansion. Have a look at the CoE ranges at different temperatures to see how variable the expansion rates are at elevated temperatures.  Other examples are:
Graph showing the change in the CoLE of aluminium between 0ºC and 527ºC (Kelvin being about 273 degrees lower than Celsius)

This graph shows a material that actually contracts briefly as it warms.  Its CoLE would be between 20 and 35 - an extremely low rate of expansion.

This shows an idealised material that has a CoLE of  about 40 at 0ºC and around 60 at 300ºC, remaining thereabouts as the temperature rises toward 1200ºC



Should We use CoE?

CoLE is “a meaningless number unless defined by the temperature range in which the measurement is taken. Calling any glass or glass combination “compatible” without specifying under what conditions is no more useful than identifying a glass by its COE without specifying the relevant temperature range. [L. MacGreggor]



Wednesday, 23 August 2023

Is Pate de Verre Watertight?

Clear frit sintered at 690C, 670C, and 650C (left to right)


"This is fascinating. I had no idea about the water leaving the glass at different temperatures."

 This comment was made in relation to some of my tests of pate de verre at different temperatures. I sintered glass at 620°C, 650°C and 690°C (1150°F, 1200°F, and 1275°F) to test for the strength of bonds at different temperatures and thicknesses.

 Because the glass appeared porous in some cases, I tested to see if vessels would be watertight at the different sintering temperatures. I found that at 620°C/1150°F the glass leaked water slowly. At 650°C/1200°F the water “sweated” out. At 690°C/1275°F it was watertight.

 It is not that the water leaves the glass. There is no water in glass. The question is whether the sintering is watertight at different temperatures. At the lower range, the sintered glass is porous; mid-range they sweat like unglazed pottery, but at the higher temperature they are watertight.

 Pate de verre is a form of sintering glass – normally in a mould. In pate de verre, a vessel needs to be fired at a higher temperature to be watertight. If a porous wall is acceptable, it can be fired to a lower temperature to preserve the granular appearance on the inside. The outside – which is in contact with the mould – will retain the granular appearance at all these temperatures. If the object is decorative, it can be sintered at a lower temperature which will preserve the brilliance of the colours.

 

Wednesday, 16 August 2023

The Mechanism of Sintering

 "Do glass molecules actually migrate when they are sintered together? "

Sintering occurs at the atomic level, where the atoms at the edge of the particles attach to others in other particles. An analogy occurs to me of Scottish country dancing. In big gatherings, small groups are formed to perform the dance, say an eightsome reel. As the dance goes on the groups become more coordinated and eventually form one large group, held together by the people on the edges of each group.

A more scientific description comes from Wikipedia:

Sintering … is the process of compacting and forming a solid mass of material by heat or pressure without melting it. … The atoms in the materials diffuse across the boundaries of the particles, fusing the particles together and creating one solid piece. Because the sintering temperature does not have to reach the melting point of the material, sintering is often chosen as the shaping process for materials with extremely high melting points such as tungsten and molybdenum.”

Applied to glass this means that you can make a solid piece of glass out of multiple touching or overlapping pieces that do not change their shape. This uses low temperatures and very long soaks.


 Schematic-diagram-for-the-sintering-and-fusion-reaction-of-the-glass-frits-on-a-substrate.
Credit: ResearchGate


The usual process is to take the glass at a moderate rate up to the lower strain point. The rate of advance is slowed to 50°C or less to a temperature between slumping and the bottom of the tack fuse range.

The slow rate of advance allows a lot of heat work to be put into the glass. This, combined with a long soak (hours), gives the atoms of the molecules time to combine with their neighbours in other particles.

Sintering occurs in the range of 610°C to 700°C (1130°F to 1275°F). The lower limit is determined by the strain point of the glass and by practicality. The length of time required at the strain point - 540°C/1005°F - is so long (days) that it is impractical.

The upper limit is determined by the onset of devitrification. This has been determined by the scientific studies of sintered glass as a structure for growing bone transplants. Devitrification reduces the strength of the bonds of the particles at the molecular level. The process of crystallisation breaks the bonds already formed between the atomic structures of the molecules. These studies showed that the onset of devitrification is at 650°C/1204°F and is visibly apparent at 700°C/1292°F regardless of the glass used.

The lowest practical temperature for sintering is 650°C/1203°F. Indications are that at least an additional two hours are needed for the sinter soak for each 10°C/18°F reduction below 650°C/1203°F. This would make for a 12-hour soak at 610°C/1131°F. For me this is not practical.

More information on the kilnforming processes and sintering experimentation is available in this eBook: Low Temperature Kiln Forming.