Showing posts with label Polarised filters. Show all posts
Showing posts with label Polarised filters. Show all posts

Wednesday, 26 February 2025

Stress Analysis of Broken Glass

Will stress still show with polarised filters on cracked and broken glass?


It's not a straightforward answer.

I was looking at some broken fused float glass a few years ago.  I had always subscribed to the idea that a fracture relieves the stress. Not always. The broken float glass had been slumped, and the pieces still showed stress.  This turned out to be a compatibility problem, although both layers were float.  

The stress of inadequately annealed glass is likely to remain visible through the filters, because inadequately annealed glass will have stress distributed across the whole piece.  But glass that has been cooled too quickly and suffered thermal shock, is more likely to show minimum stress because the break relieved most of it.

It is likely stress will show on the tree piece pictured because it has not completely broken a[art. And even when it does break, it may still show a residue of stress.

It is sensible when trying to diagnose the problem to perform a strip test of the glasses for compatibility of the glasses concerned to be sure what is happening. If no stress shows on the test strip, the stress showing on the cracked piece is unlikely to be from incompatible glass, and other factors need to be considered.

Photo credit:  Debi Frock-Lyons 

Wednesday, 8 January 2025

Slumping Splits

 This is a description of the analysis process to determine the possible causes of a split during a slump.     

Credit: Maureen Nolan


Observe the piece.

It is a tack fused piece, about 20cm (8") square, which has been slumped. 

The base layer is of clear. The piece has three additional layers, but the fourth layer is only of small glass dots and rectangles.  The central, heart, area is made of three layers.

A split has appeared during the slump. It is split irregularly through pieces rather than around them.  It is split through the thickness but only partially across the piece.

In one area the (brown) third of four layers spans the split.  Further to the left a brown second layer seems to have broken, but still spans the split.

Threads and particles of glass are connecting across the split. 

The edges are probably sharp, although only so much can be deduced from a description and one photograph.

History of the Piece

The tack fused piece has been put in a mould to form a platter and has split during the slump.

The schedule in essence was:

139ºC/250ºF to 565ºC/1050ºF for a 30’ soak (some pauses but all at a ramp rate of 139ºC/250ºF)

83ºC/150ºF to 688ºC/1270ºF for 10’

222ºC/400ºF to 516ºC /960ºF for 60’

111ºC/200ºF to 427ºC/800ºF for 10’

167ºC/300ºF to 38ºC/100ºF, off

 

The assumption is that the tack fused piece received a similar annealing soak and cool.

 

Diagnosis

Too fast

Slumping a tack fused piece of three layers plus decorative elements on top needs to be fired as for 19mm (6 layers) minimum (twice the actual).  My work for the Low Temperature Kilnforming* eBook showed best results are achieved by slumping as for one more layer (21 mm/0.825” in this case).  This gives a proposed schedule of:  

120ºC/216ºF to 630ºC/1166ºF (not 688ºC/1270ºF) but for 30 to 45 minutes

AFAP (not 400ºF) to anneal 516ºC/960ºF for 3.5 hours (not 1 hour)

20ºC/36ºF to 427ºC/800ºF, 0

36ºC/65ºF to 371ºC/700ºF,0

120ºC/216ºF to room temperature

 
Commentary on the proposed schedule:

The slump is relatively shallow, so a low temperature with a long soak is the most suitable schedule for this piece.  The drop to anneal is at a sedate rate of 222ºC/400ºF.  This is inappropriate, generally.  Just as there is a rapid rate to top temperature to avoid devitrification, so there needs to be an AFAP drop to anneal, also to avoid devitrification.  The anneal soak was not the cause of the break, but it is worthwhile noting the recommended anneal soak and cool rates are longer and slower than that used.  This is a note for the future.

 

Suspect Tack Fuse

If the tack fuse schedule was like the slump schedule, the slump was started with inadequate annealing in the previous firing.  More importantly, the evidence for an inadequate tack fuse is that the split under the brown rectangle was through the clear and red on top, but the split left the brown intact.  This means it was not securely fixed to the red below it. 

 

If the condition of the tack fuse is not sound, it is probable that difficulties will be experienced in the slump.  The poster commented “… why do [these splits] happen only when slumping – it came through tack just fine.”    It is probable the tack fuse was not “just fine”.  The way to be sure the previous firing was just fine, is to test for stress.

 

There is enough clear in this piece that an inspection for stress could be conducted by use of polarising filters before the slump.  Testing for stress is a simple viewing of the piece between two sheets of polarised light filters.  Doing this test will give information on the amount of stress, if any, in the flat tack fused blank.

 

Slump Split

During slumping the glass is subjected to more movement and therefore stress than while being fired flat.  The glass is often only barely out of the brittle zone when being slumped and that makes the stress more evident during the early part of the slump. This requires careful inspection of the failed piece.

 

Look at the glass surrounding the split.  My opinion is that the edges are sharp.  If rounded, the threads of glass from the edges of white would have melted to the edges of the split rather than spanning it. 

 

It appears the top layers were hot enough for less viscous glass on top to form stringers that span the break as the underlying layers split.  It is probable that the split was during the plastic phase of the slump for the upper glass, but  the lower layers were not as hot and suffered thermal shock. 

 

This split of lower layers, while the overlying ones are whole, is often seen in tack fuses, although the top ones do slump into the gap as the firing proceeds.  In a slump there is not enough heat, time or space, for the brown piece to slump into the gap.  Both splits appear to be a result of too rapid firing.  In the flat fusing work, the split results from too fast a ramp rate during the brittle phase of the glass.  But the slumping splits appear to occur after the brittle phase, almost as a slow tear in the glass. This may result from the differential heating of the layers if not fully combined.  It may also indicate the split developed slowly. 

 

One other observation is that these splits seem to be more frequent during the slumping of tack fused pieces.  As speculated above, it may be the inadequate tacking together of the pieces of glass during the first firing, which can form a discontinuity in transmitting heat.  And it may be that the different thicknesses across the tack fused piece allow stress to build from differential heating of the glass.

 

Rates

 

Whichever of these speculative effects may be true, it appears the ramp rates are suspect.  As mentioned elsewhere* (and in Kilnforming Principles and Practice to be published soon), the reasons for these splits are not fully known.  Even microscopic examination by Ted Sawyer has not produced a satisfactory explanation.  The only practical approach that has been successful is to slow the ramp rates.  However, the appearance of these splits is essentially random (with our current understanding), so prevention is difficult.

 

Conclusion

The probable cause of the split in the slump has been that the ramp rates were too fast.  This may have been made worse by the too short anneal soak, and the too fast cool of the tack fused blank.

 

Remedy

There is no practical rescue for this piece.  Prevention in the future is to use ramp rates that are for at least one layer thicker, if it is full fused.  If it is tack fused, firing as for twice the thickest part plus one additional layer is advisable to slow the ramp rates, allowing all the glass to heat and form at the same rate.

 

 

*Low Temperature Kilnforming; an Evidence-Based Approach to Scheduling.  Available from:

Bullseye

and

Etsy


Monday, 30 December 2024

Slump Point Test


At a time when we are all going to be trying a variety of glass of unknown compositions to reduce costs of kiln working, the knowledge of how to determine the slump point temperature (normally called the softening point in the glass manufacturing circles) and the approximate annealing temperature becomes more important.  The slump point test can be used to determine both the slumping point and the annealing soak temperature.  This was required when the manufacturers did not publish the information, and it continues to be useful for untested glasses.

The method requires the suspension at a defined height of a strip of glass, the inclusion of an annealing test, and the interruption of the schedule to enter the calculated annealing soak temperature.

A strip of 3 mm transparent glass is required.  This does not mean that it has to be clear, but remember that dark glass absorbs heat differently from clear or lightly tinted glass. The CoE characteristics given are normally those of the clear glass for the fusing line concerned.  The strip should be 305 mm x 25 mm.  

Suspend the strip 25 mm above the shelf, leaving a span of 275 mm. This can be done with kiln brick cut to size, kiln furniture, or a stack of fibre paper.   Make sure you coat any kiln furniture with kiln wash to keep the glass from sticking.


The 305mm strip suspended 25mm above the shelf with kiln furniture.


Place some kiln furniture on top of the glass where it is suspended to keep the strip from sliding off the support at each end. Place a piece of wire under the centre of this span to make observation of the point that the glass touches down to the shelf easier.



The strip held down by placing kiln furniture on top of the glass, anchoring it in place while the glass slumps.

If you are testing bottles, you may find it more difficult to get such a long strip.  My suggestion is that you cut a bottle on a tile saw to give you a 25 mm strip through the length of the bottle.  Do not worry about the curves, extra thickness, etc.  Put the strip in the kiln and take it to about 740C to flatten it. Reduce the temperature to about 520C to soak there for 20 minutes.  Then turn the kiln off.  

Also add a two layer stack of the transparent glass near the suspended strip of glass to act as a check on whether the annealing soak temperature is correct. This stack should be of two pieces about 100 mm square. If you are testing bottles, a flattened side will provide about the same thickness.  This process provides a check on the annealing temperature you choose to use.  If the calculated temperature is correct there should be little if any stress showing in the fired piece.


The completed test set up with an annealing test and wire set at the midpoint of the suspended glass to help with determining when the glass touches down.


The schedule will need to be a bit of guess work.  The reasons for the suggested temperatures are given after this sample initial schedule which needs to be modified during the firing.
In Celsius
Ramp 1: 200C per hour to 500C, no soak
Ramp 2: 50C per hour to 720C, no soak
Ramp 3: 300C per hour to 815C or 835C, 10 minute soak
Ramp 4: 9999 to 520C, 30 minute soak
Ramp 5: 80C per hour to 370C, no soak
Ramp 6: off.

In Fahrenheit
Ramp 1: 360F per hour to 932F, no soak
Ramp 2: 90F per hour to 1328F, no soak
Ramp 3: 540F per hour to 1500F or 1535FC, 10 minute soak
Ramp 4: 9999 to 968F, 30 minute soak
Ramp 5: 144F per hour to 700F, no soak
Ramp 6: off.

Fire at the moderate rate initially,
and then at 50C/90Fper hour until the strip touches down. This is to be able to accurately record the touch down temperature.  If you fire quickly, the glass temperature will be much less than the air temperature that the pyrometer measures.  Firing slowly allows the glass to be nearly the same temperature as the air.  

Observe the progress of the firing frequently from 500C/932F onward.  If it is float or bottle glass you are testing you can start observing from about 580C. Record the temperature when the middle of the glass strip touches the shelf. The wire at the centre of the span will help you determine when the glass touches down.  This touch down temperature is the slump point of your glass.  You now know the temperature to use for gentle slumps with a half hour soak.  More angular slumps will require a higher temperature or much more time.


Once you have recorded the slump point temperature, you can skip to the next ramp (the fast ramp 3).  This is to proceed to a full fuse for soda lime glasses. Going beyond tack fusing temperatures is advisable, as tack fuses are much more difficult to anneal and so may give an inaccurate assessment of the annealing. Most glasses, except float, bottles and borosillicate will be fully fused by 815C. If it is float, bottles or borosilicate that you are testing, try 835C. If it is a lead bearing glass, lower temperatures than the soda lime glass should be used. In all these cases observation at the top temperature will tell you if you have reached the full fuse temperature. If not add more time or more heat to get the degree of fuse desired.

While the kiln is heating toward the top temperature you can do the arithmetic to determine the annealing point.  To do this, subtract 40C/72F from the recorded touch down temperature to obtain an approximate upper annealing point.  The annealing point will be 33C/60F below the upper point.  This is approximate as the touch down temperature is, by the nature of the observation. approximate.  

The next operation is to set this as the annealing soak temperature in the controller. This will be the point at which it usually possible to interrupt the schedule and change the temperature for the annealing soak that you guessed at previously. Sometimes though, you need to turn the controller off and reset the new program.  Most times the numbers from the last firing are retained, so that all you need to do is to change the annealing soak temperature.


The annealing soak should be for 60 minutes to ensure an adequate anneal. This may be excessive for 3 mm glass, but as the anneal test is for 6 mm, the longer soak is advisable. The annealing cool should be 83C/hr down to 370C. This is a moderate rate which will help to ensure the annealing is done properly. The kiln can be turned off at that temperature, as the cooling of the kiln will be slow enough to avoid any thermal shock to the annealing test piece.

When cooled, check the stack for stress. This is done by using two polarised light filters. See here for the method. 


Squares of glass showing different levels of stress from virtually none to severe
 (no light emanating for no stress to strong light from the corners indicating a high degree of stress.)


If the anneal test piece is stressed, there could be a number of reasons for the inadequate annealing. It could be that the glass has devitrified so much that it is not possible to fuse this glass at all. If you also test the suspended strip for stresses and there is very little or none, it is evidence that you can kiln form single layers of this glass. You now know the slumping temperature and a suitable annealing temperature and soak for it, even though fusing this glass is not going to be successful.

Other reasons for stress due to inadequate annealing could be that the observations or calculations were incorrect.  

  • Of course, before doing any other work, you should check your arithmetic to ensure the calculations have been done correctly. I'm sure you did, but it is necessary to check.  If they are not accurate, all the following work will be fruitless.
  • The observation of the touch down of the suspended strip can vary by quite a bit - maybe up to 15C.  To check this, you can put other annealing test pieces in the kiln.  This will require multiple firings using temperatures in a range from 10C/18F above to 10C/18F below your calculated annealing soak temperature to find an appropriate annealing soak temperature.
  • If stress is still showing in the test pieces after all these tests, you can conduct a slump point test on a strip of glass for which there are known properties. This will show you the look of the glass that has just reached touch down point as you know it will happen at 73C above the published annealing point.  You can then apply this experience to a new observation of the test glass. 

Revised 30.12.24

Wednesday, 14 December 2022

Scientific Notes on Annealing

 The course from which this information is taken is based on float glass.  This is a soda lime glass just as fusing glass is.  The general observations – although not the temperatures – can be applied to fusing glasses.  This is a paraphrase of the course. It relates these observations to kilnforming.  The course is IMI-NFG Course on Processing in Glass, by Mathieu Hubert, PhD. 2015 

 

Viscosity vs. Temperature for a borosilicate glass
Graph credit: Schott

Viscosity Influence on Annealing

 Viscosity increases with reduction in temperature.  So high viscosity (low temps) cannot release stress; low viscosity (high temperature) cannot maintain shape – it will deform.  The range of viscosity is small.  The viscosity must not be so high that the stress cannot be relieved, nor must it be so low that the glass is unable to retain its shape. (p.6).  This indicates there is an inverse relationship between temperature and viscosity.  This is something we experience each time we fire. 

 The mathematical definition for strain point - high viscosity - is 1014.5 Poise.   And the annealing point as 1013.4 Poise, where if the glass is all the same temperature, the stress can be relieved in about 15 minutes.  (p.7-8)  

 As kilnformers we talk of the annealing range in terms of temperature, because that is what we can measure. The annealing occurs within a small range of viscosity. This has a relation to temperature that is not the same for all glass compositions. 

 The definition of the annealing as the range of viscosity at which annealing can occur is important.  

 First, the viscosity value remains the same over many types and styles of glass.  The temperature required to achieve that viscosity varies, leading to different annealing temperatures for different glass. 

 Second, there is a range of viscosity - and therefore temperature - during which annealing can occur.  The annealing point is 1013.4 Poise, at which viscosity the stresses in glass can most quickly be relieved (generally within 15 minutes for 3mm glass).  However, the stress can be relieved at greater viscosities up to almost the strain point - 1014.5 Poise. (p.8).  At higher temperatures, the glass becomes more flexible and cannot relieve stress.  At lower temperatures (beyond a certain point) it becomes so stiff that stress cannot be relieved.  Again, those temperatures are determined by the viscosity of the glass.

 

Annealing Soaks

 Annealing can take place at different points within the range.  Bullseye chose some years ago to recommend annealing at a higher viscosity, i.e., a lower temperature.  This has also been applied by Wissmach in their documentation although initially the published annealing point was almost 30°C higher. 

 The closer to the strain point that annealing is conducted, the longer it will take to relieve the stress.  Annealing at the strain point is possible, but it is impractical.  Apparently, it would take at least 15 hours for a 6mm thick piece (p.8). 

 However, the trade off in annealing a few degrees above the strain point – requiring longer annealing soaks – is reducing the amount of time required by the annealing cool, especially for thicker or more difficult items.

 A further advantage to annealing at lower temperatures and slower rates is that it results in a denser glass – one with lower volume (p.3). Arguably, a denser glass is a stronger one.

 


Annealing Cool

 After annealing, the glass should be cooled slowly and uniformly to avoid formation of internal stresses due to temperature differentials within the glass.  Stresses that are unrelieved above the strain point are permanent.  Stresses induced during cooling below the strain point are temporary, unless they are too great.  To avoid permanent stress, the cooling should be slow between anneal soak and strain point (p.9).  Although glass can be cooled more quickly below the strain point, care must be taken that the temperature differentials within the glass are not so great as to cause breaks due to uneven contraction.

 Annealing cool factors for flat pieces are about three times that for cylinders and five times that for spheres (p.26). Or the other way around – spheres can be annealed in one fifth the time, and cylinders in one third of the time as flat glass of the same volume.   This indicates how much more difficult it is to anneal in kilnforming than in glass blowing.

 The industrial cooling rate for float glass of 4mm is 6 times the rate for 10mm although only 2.5 times the difference in thickness (p.27). This indicates that the thicker the glass, the slower the rate of cooling should be.  But also, that there is not a linear correlation between cooling rate and thickness.

 Glass with no stress has a uniform refractive index.  Stresses produce differences in the refractive index which are shown up by the use of polarised light filters.


Source: IMI-NFG Course on Processing in Glass, by Mathieu Hubert, PhD. 2015 (available online www.lehigh.edu/imi).

https://www.lehigh.edu/imi/teched/GlassProcess/Lectures/Lecture09_Hubert_Annealing%20and%20Tempering.pdf

Wednesday, 16 November 2022

Notes on Polarised Light Filters

Polarised light filters are used to detect stress in a non-destructive testing method in kilnforming.  The use of the filters is described in this blogTo produce consistent reliable results, there are certain conditions.

 The light source needs to be diffused in such a way that it is even across the viewing area.  An intense, single point light makes it difficult to determine the relative intensity of apparent stress. Another tip is that you can use your phone or tablet as a source of diffused light and as the bottom filter.  It emits polarised light, meaning only a top filter is needed.

Stress halos from broken and fused bottles

 It is important that the glass being tested is of the same temperature throughout to get a meaningful result.  This was emphasised to me when I was running a series of tests. I got in a hurry to test for stress to be able to start the next trial quickly.  I began to notice inconsistencies in the amount of stress I recorded for results of the series of tests.  Going back to the stressed test pieces, showed different stress levels when they were cold from when they were warm.

 The conclusion is that the glass to be tested for stress must be the same temperature throughout.  Even if it is only slightly warm, the apparent stress will be exaggerated.  It may be that the testing can only be done 24 hours after removed from the kiln.

 Stress will be more evident at points and corners.  The light will be brighter at highly stressed points, and even at extreme stress exhibit a rainbow effect.  More generalised stress is evident in a lighter halo.

Stress points in a drawing square illustrating the concentrated stress at corners


 It is much more difficult to check for stress in opaque areas of a piece.  If there are transparent areas, the stress will show there, although the stress may originate in the opaque ones. To be aware of potential stress in the combination of opaque glass, strip tests must be conducted on samples of the glasses. 

 Remember to include an annealing test too, as the stress test does not distinguish the type of stress.  If the annealing test shows stress, the annealing was inadequate. It is of course, possible that the glass is stressed because of incompatibility.  But the only way to determine that is to fire another test with a longer soak at annealing.

Wednesday, 8 July 2020

Containing Stress


People frequently report success in combining incompatible glass pieces with a larger, different base.

Questions arise.

Have the resulting pieces been tested for evidence of stress with polarised light filters?

Other destructive methods such as hot water, or placing in the freezer are not adequate measures of the long-term effects of incompatibility stress.  When you are doing something outside the accepted norms, then you must test for stress to be certain what you are producing remains sound before announcing success.

Why does glass with incompatible pieces survive?

Incompatible glass will show some stress when viewed through polarised filters. You will need to decide when it is excessive.  When viewed between polarised light filters high stress will be shown by a rainbow effect in the halo of light.  Lesser stress will be shown by pale light. The degree of stress will be shown by the amount of light.

Survivability

There are some circumstances where the glass can contain the stress, and others where it cannot.

Generally, large mass pieces can contain the stress from small incompatible pieces of glass. 

Spherical objects can contain a lot of stress over a long period, which is why glass blowers and lamp workers are generally less concerned about incompatibility than kilnformers are.

Flat glass pieces behave a little differently.

Circular forms can contain stress more easily than other shapes.  Rectangular  shapes generally show the most stress at the corners.  Narrow or wedge-shaped pieces have the most difficulty in containing stress.  The stress is concentrated at the points.

The placing of the incompatible glass is also important to the survivability of the glass.  The further from the edge of the piece, the less likely there will be breaks. 

The smaller the pieces of incompatible glass in relation to the whole, the less risk of breaking. 

The more spread apart the pieces are, the greater the chances of survival for a while or long term.

The most essential piece of equipment for people starting out and those who are investigating new setups or working at the edges of accepted norms is a pair of light polarising filters to test for stress.


When combining incompatible glasses the general case is that the greater the mass of the whole object in relation to the incompatible glass, the greater the chance of survival. 

Sunday, 3 June 2018

Polarising Filters


Using polarized light filters to show stress works on the principle that stressed glass rotates the polarisation direction of the light as it comes through the glass. As polarized light filters placed at right angles do not allow any light through, only unstressed glass will continue to appear dark. 



If there is stress the light is rotated slightly and becomes visible through the filters.  



You can buy stress testing kits that incorporate a light source. You can also make your own. You need polarizing lighting gels. These come in sheets and are available from theatrical lighting sources. You will need to frame these in stiff card to keep them flat.

You use them over a light source. Place one filter down above the light source. Place the piece to be tested on top. Then orient the top filter so that the minimum amount of light shows through the filters. Any stress will show up as a light source.  The amount of light rotation depends on the stress direction, magnitude and light path length. The greater the intensity of the glow, the greater the stress the glass is exhibiting.   The amount light visible through the filters is wavelength dependent, as the filter transmits light with a particular polarisation direction. If there is large stress, different colours will be visible. 



This example shows extreme stress by the rainbow effect of light rotated in multiple directions

Note that the surface through which the light comes should be rigid, as any deformation of the surface will give a false reading.  The light filters through the slight curve and gives a stress reading, which may not be true at all.  Thus a firm flat surface is required, especially if you have a large light table for your light source.

Also note that the filters are normally on plastic sheets and easily scratched, so the glass should always be lifted and placed, rather than slid, to a new position.

A description of the compatibility test can be seen here.

revised June 2018

Wednesday, 17 May 2017

Compatibility Tests

These procedures are based on the observation that glasses compatible with the base glass are compatible with each other. This means that you can test opaque colours’ compatibilities with each other by testing each of them on clear strips.

Annealing test

These tests must be combined with an annealing test.  This consists of putting two pieces from the same sheet of glass together - so you know they are compatible - and firing them along with your compatibility test.

Viewing the results of your annealing through the polarised filters shows whether there is stress left in your annealing.  If there is, the compatibility tests are inconlusive as there is no difference in appearance of stress whether from incompatibility or from inadequate annealing.  Once you have the annealing right, you can then interpret the compatibility tests done at the same time.

Strip test






Cut a strip of base glass 75mm/3" wide and as long as convenient for you or your kiln.

Cut clear glass squares of 25mm/1" to separate the colours.

Cut 25mm/1" squares of the colours to be tested.

Start with a clear square at one end of the clear strip and alternate colours and clear along the strip finishing with a clear square.

Place two strips 25mm/1" wide either side of the clear and coloured squares.

Add a stack of two layers of clear to the kiln before firing as a test for adequate annealing. If the annealing is inadequate, then the whole test is invalid.


Test the result with polarising filters. Start with the clear annealing test square. If no stress is apparent, go to the test strip. But if stress is apparent in the annealing test, look to your annealing schedule as something needs to change. Usually the requirement is a combination of a longer soak at the annealing temperature and a slower annealing cool.




To test for compatibility, look carefully for little bits of light in the clear glass surrounding the colour. These are indications of stress – the more light or the bigger the halo, the greater the stress. Really extreme stress appears to be similar to a rainbow, although without the full spectrum.




You can use this test to determine if you annealing is satisfactory for larger pieces. In this case you should use at least 100mm squares. Stack them to the height of your planned project and dam them with fibre board or other refractory materials to prevent spread. Fire to full fuse and anneal. When cool check for stresses.


The tile method looks at compressive factors too.

Cut a 100mm/4" square clear tile

Cut two strips of glass 25mm/1" wide and 100mm/4" long for each test

Cut two rectangles of 25mm by 50mm (1" by 2") of the same glass for the two remaining sides

Cut a square of 50mm/2" for the centre. The glass in the middle is normally the test glass. To be very certain of what has happened you can do the reverse lay up at the same time. You put coloured glass around the outside, but in this case the inside needs to be clear or transparent. At least one element needs to be transparent enough to view the stress patterns, if any. So you could have a clear middle and black exterior, and vice versa.

This test is a more time consuming process and you may wish to use it only for larger projects.

Also look at the use of polarising filters

Wednesday, 14 January 2015

Annealing Unknown Glass

Sometimes you may want to use a glass in kiln forming when its characteristics are not known, such as for bottle slumping. It is possible to determine the approximate annealing point of this glass in your own studio. This tip on slump point testing gives you the information to do the test and calculations.

If you do not want to go to that detailed effort for a one-off process, you can adopt the shotgun annealing approach. This does require some observation of the glass, of course.

You need to observe when the glass has reached the temperature for the process you are performing. This will enable you to compare the behaviour of this unknown glass with what you normally use. This will give some idea of the relative annealing temperature to use. If a higher temperature is required for this glass than your normal glass, a higher annealing point can be assumed. The difference in top temperature can be added to the annealing point of your known glass.  If the top temperature is lower, you subtract the difference from the known glass' annealing point.

Set the annealing temperature to be 10C to 20C above the predicted annealing temperature and soak there for 30 to 60 minutes. This will help ensure the glass is all at the same temperature throughout. Set the annealing cool to be at about 30C per hour for pieces up to 6mm for the first 55C. The next segment should be about twice that to 110C below your chosen annealing temperature. The final segment can be around 150C per hour to 100C.  For thicker glass, the annealing cool should be proportionately slower.

This may seem an excessive, overly cautious process, but as you get to know the characteristics of the glass, you will be able to alter the schedule. This is a conservative and safe process to ensure your glass is well annealed.  And to be certain, you should check the cooled glass with polarised light filters.

amended 22.12.18