Wednesday, 8 March 2023

Annealing Soaks are Related to Cool Rates

Good annealing is important to the success of each firing of a piece. 

This is generally agreed.

 


I do not understand the reasoning of those who use long anneal soaks followed by quick cool rates and early shut offs. I don't understand because reasons are not given. Or the reasons are in the realm of kiln fairies and other mythical beings.

The length of the annealing soak can be determined from established sources. The Bullseye table for annealing thick slabs gives the recommended soak times for evenly thick slabs of glass from 6mm/0.25” to 200mm/8.0”. Use that to determine the annealing soak time.

The soak times do not need lengthening except for pieces of uneven thicknesses. The ebook Low Temperature Kilnforming gives the calculations for variations in thickness and degree of tack. Generally, they are 1.5 for contour; 2 for rounded tack; and 2.5 for sharp/angular tack. Excessively long soaks are not desirableThis is additional evidence that long soaks and quick cools create problems.


The Relationship Between Soak and Cool Rate

Use of the Bullseye table shows that there are cool rates associated with the soak times. These rates for the length of annealing soak need to be used, as they are based on research, rather than fingers in the air or mythical beings.

My experiments have shown the need to control the cooling rates to at least 50C before shutting off. The end of an adequate annealing soak has the glass within 5°C/10°F of each other part (the ΔT=5). The slow cool for the first 55°C/100°F below is important to avoid exceeding that maximum differential. The rate for the next 55°C/100°F is faster and can allow a wider ΔT, as the stresses are temporary. But they can be great enough at any point to break the glass during fast cools. Therefore, the rates associated with the annealing soaks cannot be exceeded safely.

Do not just use "what works" for others. Use information based on research. The only company publishing research is Bullseye. Their research is applicable to all fusing glass with the appropriate temperature adjustments. 

If you use long annealing soaks and quick cool rates or ones that stop at about 370°C/700°F, you risk breakages of your glass. There is no reason to take that risk.  Also long cools from annealing to 370°C take longer than the staged cooling recommended by the Bullseye research.

 

More information is available in the ebook Low Temperature Kilnforming.

 

 

Wednesday, 1 March 2023

Garden stakes

Credit: Terry Gomien


There are a variety of ways to make attachments for garden stakes. If you have a kiln, you can make a slot in the glass for the stake.

The procedure is to cut a short piece from the rod. Wrap it with thinfire or Papyros. Leave a fraction of fibre paper over the end of rod that is between the glass layers. This ensures there is a bit of separator between the end of the rod and the glass. Place the wrapped piece of rod between layers of glass and fire. When the firing is complete, pull the stub of rod from the glass. Clean the channel created well. When the slot is dry, apply adhesive to the cavity and insert the rod. Allow to cure.

Be careful about the diameter of the rod. The thicker it is, the more layers of glass are required to enable the glass to contain the stress.  A 3mm/0.125” rod needs at least one 3mm/0.125” layer of glass each side to be strong. Thicker rods need more layers each side.

The thicker the rod, the deeper into the glass the slot needs to be.  The slot for a 3mm/0.125” rod needs to be about 25mm/0.5” deep/long. Thicker rods require much longer/deeper channels.

It is possible to create square channels by placing fibre paper cut to be slightly larger than the diameter of the rod to be inserted. This is not as accurate as wrapping a stub of the rod, but has less risk of breaking the glass around the rod during firing.

 

Channels within the glass are much more secure than external attachments for garden stakes.

 

Wednesday, 22 February 2023

Breaks Early in Firings

 My pocket vases keep breaking underneath the fibre paper. What can I do?


If a pocket vase is going to break it most likely will be in the brittle phase of the glass. This is usually from too fast heating. It, more rarely, can be too fast cooling. This happens as the glass is moving from or into a solid.  It is an extreme case of shading heat from the lower layers.

The general condition

As the temperature rises, glass becomes a little less brittle. The viscosity of the glass reduces. This can also be expressed as becoming less brittle. Due to its excellent insulating properties, glass transmits heat slowly through its substance. This means that the expansion differences within the glass are greatest during the coolest part of the brittle phase.

The brittle phase is described as glass temperature being below the strain point. Then strain point is the temperature at which the glass exits the brittle phase. This temperature is about 540°C/1000°F for fusing glasses. It is higher for float and bottle glass.

The effect of shading heat from the lower parts of the piece is to induce different rates of expansion within the glass. The riskiest part of this temperature range is the lower part of the brittle phase. This is where the viscosity is highest and the rigid structure is easily broken by different expansion rates. This has been empirically observed by Bob Leatherbarrow and others to have greatest effect below 300°C/573°F. So, slow ramp rates are advisable to at least this temperature. Some continue this slow ramp rate to the strain point before increasing the rate.

 

Credit: Latta's Fused Glass


Pocket Vases

The effect of the differential expansion shows most obviously in pocket vases. This is a construction where fibre paper is inserted to create the pocket between two sheets of glass. This leaves the lower part of the glass under the fibre paper insulated from the heat. The other parts are left exposed to the radiant heat. While the exposed glass is getting hot, the covered glass is still cool. This sets up the conditions for the maximum differential in expansion rates. The differential in expansion causes the glass to break – usually it is the bottom piece that breaks. A major reason to schedule for at least double the glass thickness of a pocket vase is this shading effect. Slightly different calculations apply to tack fusing where there is no insulating layer between glass sheets.


The care in scheduling applies both to the first ramp rate and to the cooling rates of the fired piece. Fast cooling will leave the area covered by the fibre paper much hotter than the exposed glass. The difference in contraction can break the glass on the cool down too.


More information is available in the ebook Low Temperature Kilnforming; an Evidence-Based Approach to Scheduling

Wednesday, 15 February 2023

Conditions for Re-firing Kiln Wash

I do not know the exact chemical changes of kiln wash at fusing temperatures.  But I do suspect it has to do with the kaolin.  The aluminium hydrate is stable to much higher temperatures (melting point of 2,072°C/3,762°F).  So, I don't believe that part of kiln wash is changing. 

The Influence of Kaolin

Some reading has led me to learn that by 600°C/1113°F the kaolin begins going through a non-reversable chemical change.  Prior to that, water can rehydrate the kaolin.  In the hydrated state kaolin forms hexagonal plates that can slip over one another.  Once 600°C/1113°F has been exceeded the crystallisation formed cannot be reversed. It is a gradual process.  It does not become fully crystalline until 935°C - 950°C/1717°F - 1744°F. The crystallisation stops the lubricating effect of the kaolin.  I suspect that on the second full fuse firing these crystals (which contain silicon dioxide) interact with the glass (also silicon dioxide) and stick to the glass.  Although it does not fully combine with the glass.  Why this does not happen in the first firing, I do not know.

The fact that the crystallisation cannot be reversed must be the key as to why kiln wash with kaolin cannot be re-used once fusing temperatures have been reached.  The crystallisation at 800°C/1473°F is nearly complete.  It begins to exhibit the "stickiness" to the glass.  

People who consistently avoid contour and full fuse firings find they can get more than one firing from kiln wash.  This will be because the crystallisation is only partially completed.  But it indicates that repeated tack fusing on kiln wash will ultimately fail as the crystallisation will gradually increase with each firing.  The number of firings possible on one coating of kiln wash will be dependent on temperature and times, among a few other things.

However, at slumping temperatures, it appears the crystal formation is so slow as to have no effect with multiple firings.  Many people experience no difficulty with kiln wash sticking to the glass over many firings, when low temperatures are used.  High temperature slumps will reduce the life of the kiln wash (where life is taken to mean the degree of crystallisation).

 

Picture Credit: Amazon

Avoiding Kaolin

There are of course, ways to avoid kaolin. There is a kiln wash, called Primo Primer that does not have kaolin in it. And you could make your own kiln wash from aluminium hydrate. This is known as slaked alumina in ceramics. It can be used on its own with or without a medium to assist the smooth application of the kiln wash.  One good medium is CMC.

When selecting the aluminium hydrate, be aware there are finer and coarser particles.  The grades used in ceramics are usually coarser than glass people want. But it can be made finer by putting it in a rock tumbler with stainless steel ball bearings. You can run the result through a fine screen. Mix with water to brush on, or sprinkle dry over the shelf. Both these can be re-used. Neither provide as smooth results as when the kiln wash contains kaolin.

Chalk, also known as whiting, is calcium carbonate. This is often used as a separator in vitreous paint firings and some forming operations. It has low solubility in water, so cannot be painted onto shelves or moulds. It needs to be used as a loose or compacted powder. It goes through chemical changes too, making renewal after firing advisable. Above 800°C/1473°F calcium carbonate changes to calcium oxide, or quicklime. This corrosive form is another reason it is disposed of after any higher temperature firings.

Kiln wash and calcium carbonate can be fired many times at low temperatures, because their chemical composition remains relatively stable. Once higher temperatures are used, chemical changes occur. This seems to enable them to stick to the glass or form undesirable compositions. This phenomenon requires removal and re-coating of shelves and moulds after full fuse firings.  Their advantages are ease of use and low cost.

Wednesday, 8 February 2023

Annealing Tack Fused Pieces

"I'd like advice about annealing. I'm about to start a series that are to be wall hangings. The outside 100mm is only 3mm thick and the centre is 6mm and occasionally 9mm thick. They are going to be A3 and A2 size. I intend to tack fuse. I'm happy to experiment with the tack fuse temperature (I think about 677°C). How long should I anneal it? That's my question."

Determining the Tack Temperature

The high end of slumping, and the low end of sintering is 677°C/1252°F. Unless your kiln fires very hot, this is not hot enough for a tack fuse. Make some small-scale mock-ups in clear. Schedule the kiln to a full fuse on a rate not more than 300°C/540°F per hour. Peek into the kiln at 10°C/18°F intervals from 677°C/1252°F upwards. When you see the profile you want, note the temperature. When scheduling the tack firing, reduce the target temperature by 5C and add a 10-15 minute soak to get approximately the same result as you observed in the test firing.



Scheduling to Avoid Dog Boning

You have a border of 100mm/4.0” that is only one layer thick. This has the risk of becoming irregular at the corners compared to the sides (dog boning). To avoid dog boning of the 3mm base, the lowest temperature you can use is important. This is the main reason for the peeking – to determine the temperature at which dog boning begins. It is not only the degree of rounding of the edges you are looking for, but also the degree of retraction of the sides of the piece. When you note the beginning of the dog boning, you have reached just beyond the temperature to avoid that.

You will of course have to set the mock-up in such a way that you can see at least one side through the peep hole. The front will not give you accurate information, but if the side is in your sight line, you will see when it begins to deform. This peeking will keep you occupied for about 3/4 hour. Make sure you have gridded paper and pencil to hand to record information in between peeking.

It may be that the glass has not begun to round when the dog boning starts. In this case you will need to make the border larger and cut the glass back to straight lines. 20-30mm/0.75-1.125” extra all around will make it easy to trim the excess cleanly.

Annealing

I do not know the degree of tack you are aiming to achieve. It is important to the scheduling of the anneal. A sharp tack profile will require annealing for longer than a contour profile for your thicknesses. These suggestions assume the total height is 9mm/0.375”. If it higher, the soak and cooling times and rates will be longer and slower.

A sharp tack profile will need:

  • Annealing for 270 minutes (4.5 hours) with a cool rate of:
First 55°C/100°F cool at 13°C/23°F per hour.
Second 55°C/100°F cool at 23°C/41°F per hour.
Final cool at 78°C/140°F per hour to room temperature.

A rounded tack profile will need:

  • Annealing for 180 minutes (3 hours) with a cool rate of:
    • First 55°C/100°F cool at 25°C /45°F per hour
    • Second 55°C/100°F cool at 45°C /81°F per hour
    • Final cool at 150°C /270°F per hour to room temperature.

A contour tack profile will need:

  • Annealing for 120 minutes (2 hours) with a cool rate of:
    • First 55°C/120°F cool at 55°C /99°F per hour
    • Second 55°C/100°F cool at 99°C /178°F per hour
    • Final cool at 330°C /216°F per hour to room temperature.


More detailed information is in my eBook Low Temperature Kilnforming, An Evidence-Based approach to Scheduling. It is available from VerrierStudio on Etsy or through Bullseye

It is not cheap, but at 300pp worth it (in my opinion!). It discusses the three profiles of tack fusing - sharp, rounded, contour. It also deals with slumping, sintering, freeze and fuse, and bas relief or texture mould firings. The method for determining schedules is outlined and specific sample schedules are listed.

Wednesday, 1 February 2023

Grinding out Chipped Edges

Sometimes the edge of a drop vase is chipped during the polishing process, or more frequently, during use. What to do?

 Grind the edges down until the chip disappears. This seems like an obvious statement. But it is often overlooked.

 

 

The grinding can be at a slight angle to the length or parallel to the base of the piece. The angled grinding removes less glass but needs a jig of some sort to keep the angle consistent. The difficulties of obtaining a consistent angle grind, makes grinding a flat edge simpler.

 You can do this flat grinding and polishing by hand in only a half hour or so. Although a flat lap or belt sander will enable you to do it more quickly.

 You have to be careful while griding, especially when using the rough grits, to avoid small chips on the new edges. One trick I learned is to make a small bevel or chamfered arris the edge before doing the flat grinding.

 

Credit: www.pavingxpert

 If it is a large or deep chip you are grinding away, you will need to do it in stages.

 You do not want a large arris at any stage. It is possible to create such a large arris that you have to grind more glass away than the original chip would have demanded. When the grinding comes close to the end of the arrised edge, stop. Make a small arris on the edge again before continuing to grind the face. Repeat this as often as required until the chip is removed. 

 Make this arris at the start of every finer grit. The arris will not need to be so big as for the first, rough grinding. You are not taking off as much glass on the surface. But the arris will prevent tiny chips appearing at the edge of the polished surface.

 I give a final arris the polished edge. This gives a pleasant roundness to the edge. It also keeps the edge from being delicate and subject to further chips.

 



 

Wednesday, 25 January 2023

Glass Sticking in Cast Iron Moulds


Cast iron bakeware moulds have achieved popularity in decorative glass casting. One problem that seems to be common is that the glass sticks in the mould when cooled.

 

A typical cast iron heart-shaped baking mould

Choosing

 When choosing the mould, try to avoid those with vertical sides. The glass will come out more easily if there is a slope from to top to the bottom of the mould cavity. But it doesn’t stop there.

 The surfaces of cast iron moulds are rough. In casting, the glass conforms exactly to the mould at higher temperatures. On cooling the iron contracts more than the glass, making "sticking" more likely.

Preparation

 Mould preparation should include grinding down the high points to make the mould surface smooth.

 Preparation should also include seasoning of the mould. Clean well with soapy water. Dry. Put a little mineral oil on a paper towel and wipe all the surfaces. Place the mould upside down on short posts. Fire to 300°C/570°F with a 30-minute soak and then turn off. The oil will burn off. You can place fibre paper underneath to catch any excess oil you may have put onto the mould surfaces.

 If you are using kiln wash as your separator, mix it thicker than usual, say 3 parts water to one of powder. This is to give a thick coating of separator on the mould. It may be that you need to heat the mould to avoid runs.

 If you are using boron nitride, it may be possible to add more layers. But this runs the risk of the separator coming off onto the glass.

 Firing

My final suggestion is to use lower temperatures combined with longer soaks.

Releasing

 If the glass still sticks to the mould, turn the mould over. Support the mould with brick or shelf pieces. Tap the back of the mould with a rubber mallet. Not too hard because cast iron is brittle. This most often shifts the glass.

 If the glass is still stuck, put the mould in the kiln upside down on posts a little above the shelf. Fire slowly (say 125°C/225°F) toward 540°C/1000°F. Program the anneal and cool you used previously. Observe frequently to know when the glass has fallen out of the mould. When the glass has separated from the mould, advance to the annealing segment.

 Of course, if the glass has fallen out of the mould by 400°C/750°F, you will not need the anneal soak, although you still will need the controlled cool. So, you can skip the anneal cool and go to the controlled cool down segments.

 

Wednesday, 18 January 2023

Problems when Slumping

A range of problems appear in slumping.  These include bubbles, splits, puddling and more. Several causes are possible.  This blog looks at the problems, possible causes and remedies.

Bubbles




Blocked Vent Holes

 Absence of, or blocked holes at the bottom of the mould to allow air out into the kiln on all but shallow or cylindrical moulds can be a cause of bubbles. Prop the mould up on stilts if the hole does not go directly from under the glass and out of the side of the mould. Alternatively, drill a hole in the side to allow the air to escape from under the mould.

Wet moulds

In kiln forming, the moisture resulting from recently applied kiln wash is considered by some to be a cause of bubbles. The water in the mould will be evaporated by around 250°C/482°F in any sensible slumping schedule. At this temperature, the glass will not have begun to move, so the moisture can move out of the mould through any vent holes at the bottom of the mould, or past the glass as it rests on the edge of the mould.

The circumstance when a damp slumping mould could cause difficulties is when using an extremely fast rise of temperature. This is detrimental to the mould also, as the rapid formation of steam is more likely to break the mould rather than the glass. It is also unlikely to result in a good slump conforming to the mould without significant marking.

In casting with wet plaster/silica moulds water vapour can move toward the glass. Casting practice has alleviated some of the problem, by having an extended steam out before 200°C/395°F, or pouring the glass into the hot dry mould from a reservoir.

In pate de verre, the mould is most often packed while wet. The small particles normally allow any steaming of moisture to pass through, and so be dry at forming temperatures without blowing any bubbles.

Top Temperature

Bubbles at the bottom of the glass are much more likely to be the result of too high a process temperature if the previous two conditions are met. This high temperature allows the glass to slide down the mould.  The glass is not plastic enough to thicken and form a puddle at the bottom at most slumping temperatures. Instead, it begins to be pushed up from the lowest point due to the weight of the glass sliding down the sides.

 

Avoiding uprisings on the bottom of bowls.

Vent Holes

Make sure the holes are clear before placing the glass.

Wet Moulds

Ensure that the moulds are no more than damp before placing in the kiln.

Top Temperature

Firing for too long or at too high a temperature will cause the glass to continue sliding down. Having nowhere else to go, the bottom begins rising. This is the result of the weight of glass pressing down onto the bottom, especially on steep-sided moulds. This is a consistent experience across several kilns and with multiple users.

Low Slumping Temperatures.

Glass at low temperatures is affected largely by its weight and viscosity.

Viscosity Effects

Thick glass will fall more slowly than thin, when using the same schedule. Thick glass takes longer to equalise the upper and lower surface temperatures. Since the lower surface is stiffer (has a higher viscosity) it will move less using the same heat up rate. This means slower rates should be used, or a significant soak just above the strain point will be required. This softening of the glass evenly throughout the rise to the top temperature is critical in obtaining even slumps.



Splits in slumps

Without the slow progress to top temperature there can be problems. Sometimes the upper surface of the slump appears fine. It is the bottom that exhibits a split or tear that does not go all the way to the upper surface of the glass. It indicates the rate of advance was too - but only just - too fast to achieve the desired result.

 The ramp rate has been quick enough to get the top heated and become plastic. But the lower surface is still cold enough that it is brittle. The weight of the upper softened glass begins to push down before the bottom has become hot enough to be fully plastic. The force of the weight on the bottom can be enough to cause the glass to separate, rather than move as the surface does. This split on the bottom but not the top indicates a slower rate for that thickness is required. This shows the interaction between viscosity and weight.

 Sometimes the split is evident from the top. The cause of this kind of split is the same as a split on the bottom. But the ramp rate has been much faster in relation to the thickness or profile of the piece.



Weight

It is possible to have glass slightly overhang slumping moulds if you use low temperatures. The glass has the appearance of behaving differently at these low temperatures than at fusing temperatures.  

 

At low temperatures it cannot form exactly to the mould. It falls first in the middle. Because the glass is not very plastic, the edges rise up from the mould at first, because the weight there is not great enough to allow the unsupported glass to bend. The edges stay in line with the beginning of the bend in the middle.  

 

At the beginning of the slump the glass is not soft enough to stretch. It maintains its dimensions as it falls. For deep moulds, the glass moves progressively to move over the lip of the mould and begins to fall into the mould.



As the slump proceeds, the glass stretches very little and so the edges move further down the mould. The glass continues to slide down at the edges until the centre settles down onto the mould bottom. 



During this slide into place, the glass can become marked. This is usually most evident on back of the upper portions of the glass where most sliding is happening.

 With higher than necessary temperatures, the glass can continue to slide down the mould. Since the glass is still not fully plastic, the weight pushes the glass at the bottom upwards. This gives the appearance of a bubble, but is an uprising due to the pressure of the glass at the sides of the mould.

 


During the sliding of the glass along the mould, it becomes more marked. The marks often look like stretch marks. And in many senses, it is exactly that.

At higher temperatures or longer holds, the glass softens more. At this point the uprising collapses and the glass begins to thicken at the bottom. It also thins slightly at the top.


Remedies

Ramp Rates

The ramp rates should be slow.

  • ·        This allows the glass to heat evenly throughout. This is important to get even slumps. 
  •          Contrasting colours or a combination of opalescent and transparent glasses heat evenly with slow rates.
  • ·        Slow rates allow glass with tack profiles to heat evenly.
  • ·        It helps avoid splits in the bottom of slumped glass.
  • ·        It allows lower slump temperature to be used.

Low Temperatures

Using the lowest practical slumping temperature gives the best results.

  • ·        It allows glass with small overhangs of the mould to be successfully slumped.
  • ·        Low temperature reduces the mould marks on the back of the glass.
  • ·        Fewer stretch marks are in evidence.
  • ·        Low slumping temperatures with long soaks reduce the uneven slump that is sometimes in evidence with deeper moulds.
  • ·        Low temperatures allow different colours to heat more evenly.
  • ·        Low temperatures reduce the thinning or thickening of glass in a high temperature slump.

More information is available here.

This information shows you need to keep the slumping temperature to the minimum required. To find out what that temperature is, watch the slumping in stages in brief peeks (do not stare!). Look at the piece for a second or two every five minutes before you reach your desired temperature and at intervals throughout the hold.

If it has slumped completely at the beginning of the hold, you are firing too high. Reduce your temperature in subsequent firings and watch in the same way to find what the required temperature and time is. There is absolutely no substitute in slumping but to watch by peeking to learn what your mould and glass require. 

What Temperature?

To determine the temperature needed for your piece, use slow ramp rates – between 100°C to 150°C/ 180°F to 270°F. Set your top temperature around 630°C/1170°F for a simple slump of fusing glass. For bottle or window glass you will need a temperature closer to 720°C/1330°F.

It is necessary to observe the progress of the slump as you do not know the best slumping temperature. Start watching the glass at about 10-minute intervals from about 600°C/1110°F. There is not much light in the kiln at this temperature, so an external light is useful. You can also observe the reflections of the elements on the glass. When the image of the elements begins to curve, you know the glass is beginning to bend. You then know that is the lowest possible slumping temperature when using that ramp rate.

Hold for at least 30 mins at the temperature when the glass begins to visibly drop. This may or may not be long enough. Continue checking at 5-10 minute intervals to know when the slump is complete. If the glass is completely slumped before the soak time is finished, advance to the next segment. If not fully slumped, you need to extend the soak time. These operations mean you need to know how to alter your schedule while firing. Consult your controller manual to learn how to do these things. Stop the hold when complete and advance to the anneal.

In some cases, you may need to increase temperature you set by 5-10°C. You can do this by scheduling a couple of segments with 10°C/18°F higher temperature each and 30 minute soaks each.  If you do not need them, you can skip them. If you do need the extra temperature, you have it scheduled already.  You will know if you need the extra segments by whether the glass has begun to curve at the start of the first of the soaks.  If it has not after 10 minutes, skip to the next segment. Once the new temperature has been reached, check for a curve in the glass. Again, if after 10 minutes there is no curve, skip to the next (higher temperature) segment.

A low temperature slump will allow the glass to conform to the shape of the mould without softening so much that it takes up all the markings of the mould. That in turn means there are spaces for the air to escape from under the glass all the way to the slumping temperature as well as through the air holes at the bottom. It also gives the most mark-free slump possible for your shape.

If you are slumping at such a temperature that the glass has sealed to the mould, you are firing too hot anyway. Or put more positively, use a low temperature slump, that is, a slump at the lowest temperature to achieve the desired result over an extended period of your choice.


More information is available in the eBook Low Temperature Kilnforming available through Etsy or Bullseye.

Wednesday, 11 January 2023

Annealing Requirements for Shaped Pieces.

 Experiments related to slumping show that shaped items such as slumped, textured and kiln carved glass need annealing for at least one layer thicker than they are. The annealing for one layer thicker than the calculated thickness provides the most stress-free result for the finished product. Annealing for the calculated thickness does not always produce a stress-free result.  

Full Fuse

 This indicates that an evenly thick 6mm thick piece will get the best result from an anneal as for 9mm.

Texture Moulds

 A piece of glass on a texture mould with 3mm or more differences in height requires careful annealing. The more defined/sharper the texture, the greater care will be required. A 6mm blank on a mould with 3mm variation taken to a well-defined texture needs to be annealed as though it were 18mm thick. A sharp tack requires annealing as for a piece 2.5 times its actual thickness plus another 3mm.  This gives the 18mm/0.75” thickness annealing requirement for the 6mm thick piece.

Kiln Carvings

 The same kind of calculation applies to kiln carved items as for sharply textured pieces. Pieces with less sharply defined profiles can be treated as one of the more common tack fused profiles.


Credit: Vitreus-art.co.uk

Tack Fusings

 A rounded tack fused piece of a 6mm base with 3mm tack elements that is being slumped will need annealing as for 21mm.  Twice the actual thickness plus 3mm giving the annealing requirement as for 21mm/0.827”.

 A contour tack of the same dimensions as given in the first example will require annealing as for 19mm/0.75”. The annealing requirement when slumping is for 1.5 times the thickness plus another 3mm.

In General

 The general approach to annealing shaped pieces is to calculate the thickness for the anneal and add one layer more to get a good anneal for slumped and other formed pieces. 


 The research and the reasoning behind this approach is given in LowTemperature Kilnforming, An Evidenced-Based Guide to Scheduling available from the Etsy shop VerrierStudio and from Bullseye

Wednesday, 4 January 2023

Effects of Dam Materials on Scheduling

 I once made a statement about the effects of various dam materials on scheduling. This was based on my understanding of the density of three common refractory materials used in kilnforming – ceramic shelves, vermiculite board and fibre board. I decided to test these statements.  This showed I was wrong in my assumptions.

I set up a test of the heat gain and loss of the three materials. This was done without any glass involved to eliminate the influence of the glass on the behaviour of the dams. The dam materials were laid on the kiln shelf with thermocouples between. These were connected to a data logger to record the temperatures.


Test Setup

 The thicknesses of the dams may be relevant. The vermiculite and fibre boards were 25mm thick. The ceramic dam material was 13mm thick.

The schedule used was a slightly modified one for 6mm:

  • 300°C/hr to 800°C for 10 minutes
  • Full to 482°C for 60 minutes
  • 83°C to 427, no soak
  • 150°C to 370°C, no soak
  • 400°C to 100°C, end

 

The data retrieved from the data recording is shown by the following graphs.


Temperature profile of the air, ceramic, fibre, and vermiculite during the firing.

Highlights:

  • The dam materials all perform similarly.
  • This graph shows the dams have significant differences from the air temperature – up to 190°C – during the first ramp of 300°C/hr. (in this case).
  • There is the curious fall in the dams’ temperatures during the anneal soak. This was replicated in additional tests. I do not currently know the reasons for this.
  • The dams remain cooler than the air temperature until midway during the second cool when (in this kiln) the natural cooling rate takes over.
  • From the second cool to the finish, the dams remain hotter than the air temperature.

 Some more information is given by looking at the temperature differentials (ΔT) between the materials and the air. This graph is to assist in investigating how significantly different the materials are.

This graph is initially confusing as positive numbers indicate the temperature of the first is cooler than the material it is compared with, and hotter when in negative numbers.

 

A= air; C=ceramic; F=fibre board; V=vermiculite

Temperature variations between air and dams

 As an assistance to relating the ΔT to the air temperature some relevant data points are given. The data points relate to the numbers running along the bottom of the graph.

 Data Point       Event

  • 1            Start of anneal soak.
  • 30          Start of 1st cool (482°C)
  • 45          Start of 2nd cool (427°C)
  • 65          Start of final cool (370°C)
  • 89          1st 55°C of final cool (315°C)
  • 306         100°C

 

At the data points:

  • At the start of anneal soak the ΔT between the dams is 16°C with the ceramic shelf temperature being 18°C hotter than the air.
  • At the end of the anneal soak of an hour, the air temperature is 20°C higher, although the ΔT between the dams has reduced to 12°C.
  • At the end of the 1st cool the ΔT between the dams has reduced to 9°C and the ΔT with the air is 3°C.
  • At approximately 450°C the air temperature becomes less than the dams.
  • At 370°C the hottest dams are approximately 17°C hotter than the air.  The ΔT between the dams is 10°C.

 More generally:

  • The air temperature tends to be between 17°C hotter and 17°C cooler than the ceramic dams during the anneal soak and cool.  The difference gradually decreases to around 8°C at about 120°C.
  • Ceramic and fibre dams loose heat after the annealing soak at similar rates – having a ΔT between 4°C and 1°C, with a peak difference of 9°C at the start of the second cool. This means the heat retention characteristics of ceramic strips and fibre board are very close.
  • Between the annealing soak and about 300°C the vermiculite is between 12°C and 9°C hotter than the same thickness of fibre.  Vermiculite both gains and loses heat more slowly than the ceramic or fibre dams do. This means that vermiculite is the most heat retentive of the three materials.
  • Vermiculite remains hotter than ceramic from the start of the second cool. This variance is up to 9°C and decreases to 3°C by 100°C.
  • Fibre board is cooler than ceramic dams until the final cool starts, when there is little variance.  At the start of the second cool there is about 15°C between the two.
  • Vermiculite remains cooler than fibre dams throughout the cooling process. This ranges from about 12°C at the start of the first cool to about 3°C at 100°C.


Since we cannot see more than the air temperature on our controllers it is useful to compare air and dam temperatures. The same data points apply as the graph comparing differences between materials.

 

Ceramic-Vermiculite; Ceramic-Fibre Board; Vermiculite-Fibre Board; Ceramic-Air Temperature
This graph shows the temperature differences throughout the cooling of various materials.

  • During the annealing soak, the air temperature is greater than the dam temperatures. The fibre and vermiculite boards remain at similar temperatures and the ceramic dam is the coolest.
  • The three dam materials even out with the air temperature at the start of the second cool.
  • Through the second and final cools, vermiculite dams remain hotter than the air temperature – between about 24°C at start of the final cool and 9°C at 100°C.
  • The ceramic and fibre dams are close in temperature difference to the air from the start of the final cool. Their ΔTs are 17°C at the start of the final cool and 6°C at 100°C.


Conclusions

  • Dams will have little effect during the heat up of open face dammed glass.  The slight difference will be at the interface of the glass and the dams where there will be a slight cooling effect on the glass. Therefore, a slightly longer top soak or a slightly higher top temperature may be useful.
  • The continued fall in the dams’ temperature during the anneal soak indicates that this soak should be extended to ensure heat is not being drained from the edges of the glass by the dams. There is the risk of creating unequal temperatures across the glass.
  • The ability of ceramic and fibre dams to absorb and dissipate heat more quickly indicates that they are better materials for dams than vermiculite board. The slightly better retention of heat at the annealing soak, indicates that ceramic is a good choice when annealing is critical.        
  • These tests were fired as for 6mm/0.25” glass and so show the greatest differences. Firing for thicker glass will use longer soaks and slower cool rates. These will allow the dams to perform more closely to the glass temperature during annealing and cool.

Based on these observations, I have come to some conclusions about the effect of dams on scheduling.

  • There is no significant effect caused by dams during the heat up, so scheduling of the heat up can be as for the thickness of the glass.
  • The lag in temperature rise of the dams indicates a slightly longer soak at the top temperature (with a minor risk of devitrification), or a higher temperature of, say 10°C, can be used.
  • The (strange) continued cooling of the dams during the annealing soak indicates that extending the soak time to that for a piece 6mm thicker than actual is advisable.
  • The cool rates can continue to be as for the actual thickness, as the dam temperatures follow the air temperature with little deviation below the end of the first cool.
  • Ceramic dams of 13mm/ 0.5” perform better than 25mm/1.0” vermiculite and fibre board. 
  • However, in further tests of 25mm/1.0” thick ceramic dams performed similarly to the same thickness of vermiculite. So, 25mm/1.0” fibre board the best when choosing between the three materials of the same thickness. But 25mm ceramic strips are not common, nor are they needed for strength or weight.
  • The performance of the three dam materials tested do not show enough difference in temperature variation to have significant affects on the annealing and cooling at times and rates appropriate to the thickness of the glass.
  • It is the thermal insulation properties of the dam material, rather than the density that has the greatest influence on performance as a dam material.