Wednesday 17 May 2023

Slumping Blank Size


When you're making a piece that you intend to slump does it need to be bigger than what you're making, and by how much?

Generally,

The general advice is to make the blank the same size/diameter as the rim of the mould.  This works best for shallow moulds with a generous draft, or shallow slope to the bottom.  

There are numerous exceptions of course.

Deep moulds

Deep is a relative term.  A small round mould of 100mm/4” with a 30mm/1.25” drop can be considered deep. But this drop would be considered shallow for a 300mm/12” diameter mould.  A drop of 100mm/4” into a 300mm/12” mould would be deep.

There are two approaches to this.  We know the blank will end up with a considerably smaller diameter than the deep mould. This is because the surface of the glass does not change its dimension much.  As a result, the diameter of the slumped piece is less than the flat blank’s diameter.  Placing a flexible measuring tape on the outside of the slumped piece will show the lengths of the flat blank and curved piece are similar.

Larger Blank

As a result, we are tempted to make the blank larger than the mould.  By how much? as the questioner asks.  The safest is avoid exceeding 6-8mm/.025 – 0.375”.  With a slow slumping rate, the edges will rise as the interior bends downwards and allow the excess glass to take up the same diameter of the mould before deforming enough to catch on the edge of the mould.  With a centimetre or 0.375 inch overhang, you begin to take greater risks with the rim beginning to slump outside the mould and hanging up. 






Smaller Blank

But size matters.  The small excess works best on larger moulds (250mm/8”) or more.  Employing this oversizing on smaller moulds has problems.  The span of the smaller moulds requires higher temperatures and/or longer soaks.  The result of this greater heat work is that the rim of the glass can begin to slump outside of the mould. In extreme cases, this will cause the glass to break.  More often, the edge does come into the mould, but with heavy stretch marking and sometimes needle points where the edge drags along the mould.

It is often best to make the blank smaller than the mould.  Small enough that it fits just below the rim of the mould.  This allows forming of the glass without the frequent drag marks and needle pointing.  Placing the glass level is most important when the glass is not supported by the rim.  If the final size of the slumped piece is important, you will need to slump in a larger mould. I do not know of a method of calculating that.  It is a matter of experimentation.

Steep Moulds

Ceramic shapes from charity shop finds that are adapted to be moulds are often steep sided as well as deep. They often have no rim on which to rest the glass before the slump shape takes over.  Both these elements result in the glass being much smaller than the mould when complete.

Collar

You can counteract the effect of deep, steep moulds by placing a collar of fibre board around the mould.  

Make a cut out from the fibre board by placing the mould upside down and tracing the outline. Cut the board slightly inside the line scribed.  Then fashion a bevel to meet the angle of the outside of the mould.  Support the board at the appropriate height for the mould.  Fill any gap between board and mould with kiln wash powder or a paste of the powder, depending on the nature of the gap.  This supports the glass during the slumping while allowing it to slump into the mould.  It increases the possibility of getting a steep side on the glass.  It also allows you to put a rim on the shape if you want.

Staged Slumping

Sometimes the collar or rim is not sufficient to allow the glass to move as desired in a single slumping stage.  Then multiple slumping stages are required.  The common approach has been to purchase a three-stage slumping set.  This can limit your approach.

·        The general approach is to measure the inside surface of the final steep mould. 

·        This gives you the starting diameter for the blank. 

·        Then measure the diameter of the mould at the outside of the rim. 

·        This gives you the diameter of a slumped piece to fit into the final mould.   

Compare the largest diameter blank to existing moulds you have. Will the glass have slumped enough to reduce the diameter to fit into the final mould?  In some cases, where the answer to that question is yes, only two-stage slumps are required. 

Most times a three-stage slump is needed. You need to find an intermediate mould that will deliver a slump with the required diameter.  This will be a moderately deep mould, usually with steeper sides than the first, but less steep than the final mould.

Angular Moulds

Angular moulds are those with sudden short drops to the foot (flat part of the mould). These are often ogee curves. 



These require more time or heat to form completely to the bottom of the mould.  The glass is curving in two directions during the slump.  The glass should be only slightly larger than the mould at most.  To counteract the tendency to slide down the mould, low temperatures and long soaks are needed.

 

Rectangular moulds

The main problem of rectangular moulds is the dog boning of the straight edges of the glass during the slumping. There are some suggestions.

Cut the blank with slightly outward curves.  This will help to compensate for the tendency to dog bone.  It will require some experimentation.  Slumping a standard square or rectangular mould will give an idea of how much the glass deforms during the slumping.  That amount of curve can be added to the edge when cutting out the blank.

Round the corners of the blank.  This relies on the principle that there is more glass at the corners to slump than at the sides.  A 10mm/0.375” radius should be enough.  

There is less glass to compress along the sides than at the corners.


Another element is to provide the rectangular shapes with rims.  This forces any dog boning to the rim rather than the sides of the slump.  It can be combined with either of the previous possibilities.

These do not always work and are sometimes difficult to reconcile with the design. The additional possibility to counteract the dog boning of the shape is to use slower rates, lower temperatures, and longer soaks. This is not always successful.  Rectangular shapes remain the most difficult to get the glass to conform faithfully to the mould.

 

There are ways to get the slumping blanks to conform to the moulds, and they all involve modifications to the glass, mould, or schedules.

No comments:

Post a Comment