Tuesday, 15 March 2022

Metal inclusions




Two difficulties with metal inclusions in glass are common: stress and bubbles.

Stress

Metal inclusions always create stress in the glass. Different metals have different expansions and different strengths.  They also have different melting points - some so low that they liquify during the fusing process.

The trick in using metals as inclusions is to minimise the amount of stress. Small amounts of stress can be contained within the glass. The thicker or more mass inside the glass, the greater risk of stress breaks. The stronger or more rigid the metal is, the more stress will be generated.

Minimising stress is most easily achieved by using small amounts of the metal.  Thinning the metal as much as possible also reduces stress.  Flattening wire also helps reduce the amount of stress as well as keeping it in the place you want it without rolling away from its placement.

Bubbles

Bubbles often form around inclusions, especially of metals.  Metals that do not melt at fusing temperatures are stiffer than the surrounding glass.  You can see from the table noted above those metals which melt at higher temperatures than fusing.  These metals will create bubbles around their perimeter and elsewhere over the metal wherever there are wrinkles or undulations as the metal holds air in those places.

Thin metals

One possibility to reduce the bubbles is to thin the metal by hammering flat or use foil thicknesses of the metal.  Many specialist metal suppliers have very thin metals, often called shims.  They are increasingly available in online shops.

Weight

Another is to use enough glass on top to flatten the metal.  You should flatten the metal in the cold state as much as you can.  Then the weight of the glass presses down on the metal both in the cold and heated states. With a good long bubble squeeze, you can force more air out to the sides than with less covering glass.

Placing

A third possibility is placement. The further the metal inclusion is from the edges the more air is likely to be trapped to form bubbles.  If the air has less distance to travel, more is likely to escape.

Pressing

Supporting the edges or corners allows the centre to drop before the edges are sealed.  The weight of glass helps to press the air out to the sides.  Thicker glass (6mm/0.25") on top of the metal inclusion can help push the air away from the metal. You can also provide - within the design - paths for the air to escape. This can be elements such as powder, stringers and other glass accessories that can hold the glass up during the bubble squeeze process, but become invisible at fusing temperatures.

Fire in stages

A fifth possibility is to fire differently.  You can place the metal on a kiln shelf which is covered with fibre paper and put the glass on top of the metal and fire to a rounded tack fuse at the minimum.  To avoid dog-boning, you should cut the capping piece several centimetres larger than the final piece, so you can cut off the distorted edges. Clean the bottom and dry very well after firing and put the base under the top piece that has the metal attached.  Fire the combined piece slowly with a good bubble squeeze.  This can be applied to included vegetable matter too. 

Further information is available in the ebook Low Temperature Kiln Forming.


Inclusions often produce stress and bubbles.  There are some things that can reduce both when encasing metals or vegetation.



No comments:

Post a Comment