Showing posts with label Fused Glass in Glasgow. Show all posts
Showing posts with label Fused Glass in Glasgow. Show all posts

Thursday 25 November 2021

Strain Points

A critical range is the temperature around the annealing point. The upper and lower limits of this range are known as the softening and strain points. The higher one is the point at which glass begins to bend.  It is also the highest temperature at which annealing can begin. The lower one is the lowest point at which annealing can be done. Soaking at any lower temperature will not anneal the glass at all. This temperature range is a little arbitrary, but it is generally considered to be 55C above and below the annealing point. The ideal point to anneal is thought to be at the annealing temperature, as annealing occurs most rapidly at this temperature.

Annealing Range
However, glass kiln pyrometers are not accurate in recording the temperature within the glass, only the air temperature within the kiln. The glass on the way down in temperature is hotter than the recorded kiln atmosphere temperature. A soak within the annealing range is required to ensure the glass temperature is equalised. If you do a soak at 515°C for example, the glass is actually hotter, and is cooling and equalising throughout to 515°C during the soak. The slow cool to below the lower strain point constitutes the annealing, the soak at the annealing point is to ensure that the glass is at the same temperature throughout, before  the annealing cool begins.

Strain Point and Below
No further annealing will take place below the strain point. If you do not anneal properly, the glass will break either in the kiln or later no matter how carefully you cool the glass after annealing.

It is still possible to give the glass a thermal shock at temperatures below the lower strain point, so care needs to be taken.  The cool below the anneal soak needs to be at a slow controlled rate that is related to the length of the required anneal soak. Too great a differential in contraction rates within the glass can cause what are most often referred to as thermal shock.  The control of the cooling rate reduces the chance of these breaks.

Softening Point
The glass is brittle below the softening point temperature, although it is less and less likely to be subject to thermal shock as it nears the softening point.  It is after the softening point on the increase in temperature that you can advance the temperature rapidly without breaking the glass.  So, if you have a glass that gives its annealing temperature as 515C, you can safely advance the temperature quickly after 570C (being 55C above the annealing point).


Wednesday 10 November 2021

Single Layer Circle with Decorative Rim


A question arose:

If you fuse a single 20cm diameter sheet of 3mm glass to full fuse, [with a decorative rim] what happens? … Would the lack of two layers in the centre be a problem for the 6mm rule?

This layup risks trapped air and a large central bubble.  The explanation involves the combination of volume control and weight.

Volume control

The volume control relates to the single 3mm layer in the centre.  The glass will thin in the centre and thicken at the perimeter.  This leads to the risk of thinning to the degree that bubbles are created in the centre.  The edges will also draw in as the viscosity - surface tension - of the glass pulls the glass toward a 6mm thickness.

Weight

The explanation is also about weight.  The decorative rim adds weight to the outside of the piece.  This weight will “seal” the rim of the glass to the shelf, reducing the possibility of air escaping from under the central portion of the piece.  This weight effect on the rim increases the risk of a large central bubble.

Profile

Another influence on the result of the fuse is the degree of fuse.  At full fuse the viscosity of the glass is less and so resists the force of expanding air much less than when cooler. Even at rounded tack fuse, the glass will be unable to resist the formation of bubbles. As the glass thins and viscosity decreases, any air at all will cause a bubble.

Changes for the future

Avoidance of bubbles in this piece relate to design, scheduling and technique.

Design

It is possible to design a piece of this nature to avoid the volume control issue.  The base piece could have a smaller circle or rectangle centralised on top inside the proposed perimeter.  The rim can then have the decorative elements placed.  If they are spaced widely, frit can be used to fill significant gaps.  The piece can then be placed in the kiln for a full fuse.

Scheduling

You can also fire the piece as originally described very slowly to a low temperature.  This uses the concept of heat work. By applying the heat over a long period, you can achieve the same effect as would be achieved by a faster rate of advance to a higher temperature. 

There are at least two ways to increase the heat work.  You can use a very slow rate of advance to a point slightly above the softening point of the glass.  This will be the lower end of the slumping temperature range of your glass.  The soak may be for hours.  You will need to observe when the effect you want is achieved.

You also can choose the same lower slumping temperature and reach it in your standard fashion.  This will require an even longer soak time to achieve the same result.

In both these low firing approaches, you will need to observe to determine when the piece is finished.

Technique

The “flip and fire” technique may also work on the single layer with an added rim.  To do this you build the piece upside down on the shelf.  It helps to draw an outline of design on Thinfire, or Papyros.  Place the decorative elements and cap them with the clear.  Take the whole to a rounded tack fuse.  When cool, clean well and fire to a tack fuse again.  This will give something less than a full fuse, but it will be more than a tack, as the heat work is cumulative.

Further information is available in the ebook Low Temperature Kiln Forming.

Summary

A single layer piece with a decorative rim is most likely to produce bubbles in the centre.  There are some ways to overcome this: design, scheduling, and technique. Design is the most likely to be successful.

Wednesday 3 November 2021

Bubble formation


Question:

I had 2 kiln loads where every piece had huge bubbles. The 3rd time I did a test fire and put 2 pieces on Thinfire and one on the kiln shelf. The one without thin fire got a bubble. Theories?



Response:

Your experiment showed that the Thinfire prevented the bubbling.  The question you are asking is why.

Fibre paper is a porous material allowing air to move through it and from under the glass.  If the shelf has only slight depressions, the Thinfire or Papyros will allow air out from under the glass avoiding bubbles.

Thicker fibre paper can provide a different and more level surface if it is thick enough to span any depressions in the shelf, while allowing air out too.


First, it is apparent that your shelf is not absolutely smooth and level.  This has been shown by your experiment where Thinfire prevented bubbles where previously there had been bubbles.  It showed that without the additional cushion that the depressions, although slight are enough to cause bubbles without additional fibre paper separators.

Second, although you do not give your schedule, the firing is too hot.  There is dog boning of your thin glass.  The bubbles on the thinner glass have burst and thinned greatly.

Firing hot causes the glass to become much less viscous than needed to perform a full fuse and allows the trapped air to push bubbles into and through the glass.  Lower temperatures with longer soaks/holds enable the glass to better resist the formation of large bubbles.  Also firing more slowly enables air to escape and allows the use of lower temperatures while still being able to achieve the fuse you want.


Wednesday 27 October 2021

Tack fusing multiple layers



The question:

Full fused 6mm base, with 3mm tacked pieces. It is to be tack fused and slumped now.  Does the number of fuse firings affect the rate of advance, and how long a soak will be required to slump it? 





Multiple firings
If properly annealed each time the glass is fired, the number of firings does not affect how the glass should be fired.  This assumes the same number of layers are being fired.


Tack fusing
Tack fusing this piece will need some care.  The portion to be tack fused is 3 layers thick – overlapping white pieces surmounted by the yellow balls.  The base layer is shaded from the heat by the white, which is generally slower to transmit the heat than many other colours. Bullseye suggests doubling the total height and firing for that thickness. Bob Leatherbarrow suggests 1.5 times the total height for creating the schedule.  Firing Schedules for Kilnformed Glass,  p. 124-6

In this case, because of the amount of white, I would go with the Bullseye suggestion.  My researches for "Low Temperature Kilnforming" also indicated that a tack fuse requires a schedule for two times the thickness. Other levels of tack fusing require different calculations.  The total height of 15mm will be treated as 30mm for scheduling purposes.  This is midway between the thicknesses in the published table.  The rates and times in the table are linear. You can calculate a mid-point in the schedule to get the numbers for your piece.  Half the difference between 25 and 38 is 6.5mm giving 31.5mm.  Using the half-way point will be slightly more conservative than using exact calculations.  It is so close as to make no significant difference.

You will notice that the table gives only annealing times and rates.  There is way you can use this table for the getting initial heating rates.  Look at the final cooling rate for the thickness. If the glass can survive the cooling rate given without showing stress, it will also survive that rate of increase.  The mid-point between 90 and 45 is 67.5°C.  This gives an initial rate of advance (68°C) which can be applied for this piece that has so much shading of the base layer. It should allow the heat to transfer through the white to the base layer without great temperature differences between the covered and the uncovered base layer.

As there is a lot of work in this piece, and it is for someone else, you can be cautious.  Introduce a soak at 260°C of about 30 minutes.  This will help to ensure the heat is distributed to the bottom layer.  If you want to be even more cautious, you can introduce a second 30-minute soak at 371°C before continuing to 540°C.

At 540°C you have passed out of the brittle zone of glass and can increase the rate of advance to 167°C per hour.  The amount of heat work you have put into this piece by the slow rate of advance may enable you to complete the tack fusing with a soak at 720°C.  You will need to observe when the appropriate amount of rounding has been achieved. You will then be able to advance to the annealing portion of the firing. 

For this piece, the annealing soak will be for 5 hours with a cool of 11°C per hour for the first 55°C. Then 20°C per hour for the next 55°C and a final cool of  65°C per hour. This anneal and cool will be about 21 hours, in addition to the ca. 21 hours, in addition to about 10 hours heat up, so don’t expect a quick firing.  Plan two days for the tack fuse.


Slumping
Slumping will need care too.  The piece has uneven layers and the same care is required as for tack fusing.  Experimentation has shown me that scheduling for an additional 3mm (1/8") is needed to ensure the piece is thoroughly heated throughout its thickness.  In addition, the white is stiffer than the other colours and will not bend so easily.  This kind of slow schedule means the glass will be at the same temperature throughout as the slumping starts.

Because of the slow rates of advance, you may be able to slump this piece at 620°C with a significant soak time.  You will need to observe when the piece is fully slumped.  Be prepared to advance to the annealing and cool segments of the schedule.  Some times you need to extend the hold time.  Be prepared for this too. The annealing time and cooling rates will be the same as for the tack fusing.

Further information is available in the ebook Low Temperature Kiln Forming.




Wednesday 22 September 2021

Firing cremains to avoid bubbles

Firing with cremation remains is very similar to firing with any organic material encapsulated into glass.

Design
There are several possible design approaches.

Drilling holes is one method to avoid bubbles.  You can drill the base, put the remains on top and then cap.  Place the whole assembly on 1mm fibre paper to allow the air to migrate out through the hole and fibre paper under the glass.

Alternatively, you fire upside down and then fire polish the top.  Place the eventual top down onto the kiln washed shelf or Thinfire. Place the remains on the glass and cap with the glass that has the hole drilled.  Fire, then clean, turn over and fire polish the final top surface.

Design the piece and placing so there is a gap at the edge. 
This gives a route for air to escape.  If there is any gap left after fusing, it can be filled with a bit of super glue or other clear glue. 

Another method is to place pieces of frit or stringer at the very edge of the base glass to allow air out from under the centre of the piece.

If you do not need to concentrate the cremains in one area, you can disperse the material evenly across the piece to reduce the possibility of large bubbles.  The air and gasses can migrate to the edge through the particles, just as happens with powder sprinkled between layers of glass.

You can combine some of these methods as they are not mutually exclusive.


Firing
Fusing these pieces is, in principle, the same as encapsulating any organic material within the glass.  Slow advances are required with a 3 to 4-hour soak at around 600°C to burn out any residual organic material just as you might for thick vegetable matter.  You can add another bubble squeeze soak of an hour or so at around 650°C to gradually push any remaining air out from between the particles.  Then advance to the fusing temperature and anneal as usual.


Friday 27 August 2021

Characteristics of Some Glasses

This information has been taken from various sources. Some manufacturers may change the composition of their glasses or the published information about them from time to time. Therefore, this information can only be used as a guide. If the information about strain, annealing, and softening points is important, contact the manufacturer for the most accurate information.

The temperature information is given in Celsius.
Strain point – the temperature below which no annealing can be done.
Annealing point – the temperature at which the equalisation soak should be done before the annealing cool.
Softening point – the temperature at which slumping can most quickly occur.


Armstrong – Now made by Kokomo

Typical Borosilicate – nominal CoE 32
Strain point – 510 - 535C / 951 - 996F
Annealing point – ca. 560C/1041F
Softening point - ca. 820C/1509F

Blackwood OZ Lead – nominal CoE 92
Annealing point - 440C/825F

Blenko – nominal CoE 110
Annealing point – 495C/924F

Bullseye – nominal CoE 90

Transparents
Strain point - 493C/920F
Annealing point - (532C)  Note that Bullseye has changed this to 482C/900F for thick items
Softening point - 677C/1252F

Opalescents
Strain point - 463C/866F
Annealing point – (501C)  Note that Bullseye has changed this to 482C900F for thick items
Softening point - 688C/1272F

Gold Bearing
Strain point - 438C/821F
Annealing point - (472)   Note that Bullseye has changed this to 482C/900F for thick items
Softening point - 638C/1182F

Chicago – nominal CoE 92

Desag  Note that this glass is no longer produced
Artista – nominal CoE 94
Strain point – 480 - 510C / 897 - 951F
Annealing point – 515 - 535C / 960 - 996F
Softening point – 705 – 735C / 1302 - 1356F
Fusing range – 805 – 835C / 1482 - 1537

Float Glass (Pilkington UK)
Optiwhite
Strain point – 525 - 530C / 978 - 987F
Annealing point – 559C/1039F
Softening point – 725C/1338F

Optifloat
Strain point – 525 - 530C / 978 - 987F
Annealing point – 548C/1019F
Softening point – 725C/1338F

Float Glass (typical for USA) nominal CoE 83
Strain point - 511C/953F
Annealing point - 548C/1019F
Softening point – 715C/1320F

Float Glass (typical for Australia) nominal CoE 84
Strain point - 505-525C / 942 - 978F 
Annealing point – 540 -560C / 1005 - 1041F

HiGlass “GIN” range – nominal CoE 90
Annealing point - 535C/996F

Gaffer colour rod – nominal CoE 88

Gaffer NZ Lead – nominal CoE 92
Annealing point - 440C/825F

HiGlass
Annealing point - 495C/924F

Kokomo – nominal CoE 92 - 94

Cathedrals
Strain point - 467C/873F
Annealing point - 507C/946F
Softening point - ca. 565C/ca.1050F

Opal Dense
Strain point - 445C/834F
Annealing point - 477C/891F
Softening point – ca. 565C/1050F

Opal Medium
Strain point - 455C/834F
Annealing point - 490C/915F
Softening point – ca.565C/1050F

Opal Medium Light
Strain point - 461C/863F
Annealing point - 499C/931F
Softening point – ca.565C/1050F

Opal Light
Strain point - 464C868F
Annealing point - 502C/937F
Softening point – ca.565C/1050F

Kugler – nominal CoE
Annealing point - 470C/879F

Typical lead glass – nominal CoE 91

Lenox Lead – nominal CoE 94
Annealing point – 440C/825F

Merry Go Round – nominal CoE 92

Moretti/Effetre – nominal CoE 104
Strain Point: 448C/839F
Annealing Range: 493 – 498C / 920 - 929F
Softening Point: 565C/1050F

Pemco Pb83 – nominal CoE 108
Annealing point – 415C/780F

Schott Borosilicate (8330) nominal CoE 32
Annealing point - 530C/987F

Schott “F2” Lead – nominal CoE 92
Annealing point - 440C/825F

Schott “H” & “R6” rods - nominal CoE 90
Annealing point – 530C/987F

Schott “W” colour rod – nominal CoE 98

St Just
MNA
Strain point - ca.450C/843F
Annealing point – ca. 532C/ca. 991F

Spectrum
System 96 – nominal CoE 96
Transparents
Strain point – 476C  +/- 6C  /  890F +/- 11F
Annealing point – 513 +/- 6C  /  956C +/- 11F
Softening point – 680 +/- 6C  /  1257F +/- 11F
Opalescents
Annealing point – 505 -515C  /  942 - 960F

Spruce Pine 87 – nominal CoE 96
Annealing point – 480C/897F

Uroboros system 96 – nominal CoE 96

Transparents
Strain point - 481C/899F
Annealing point - 517C/964F

Opalescents
Strain point - 457C/855F
Annealing point - 501C/935F

Uroboros - nominal CoE 90

Transparents
Strain point - 488C/911F
Annealing point - 525C/978F

Opalescents
Strain point - 468C/875F
Annealing point - 512C/955C

Wasser - nominal CoE 89
Annealing point – 490C/915F

Wissmach
Wissmach 90
Annealing point - 483C/900F
Softening point - 688C/1272F
Full Fuse - 777+

Wissmach 96
Annealing point - 
483C/900F
Softening point - 688C/1272F

Full Fuse - 777+ / 1432+


Wednesday 28 April 2021

Sharp points on rectangles


At the conclusion of firing pieces with right angles or sharper shapes you often find very sharp needle points at the corners.


This is a result of the expansion of the glass as it heats up.  At top temperature, the glass piece is larger on the shelf than when you put it in cold.  The amount of this expansion is related to the thickness of the piece and the temperature it has been fired at.

As the glass cools, it contracts.  The contraction at corners and points has greater effects on the glass than at the sides.  The corners are contracting from two sides rather than only one.  This makes them a little more resistant to contract and often leaves a little of the glass stuck at the furthermost point of expansion as it contracts.



I have found the best prevention of sharp points on the corners of rectangular pieces, and those with even sharper angles, is to nip off the tiniest bit of the corners. This very slight blunting of the corners allows the glass to expand and then retract without the corner or point catching on the separator and so creating the sharp needles.

Further information is available in the e-book: Low Temperature Kilnforming.



Wednesday 31 March 2021

As Fast as Possible Firings

I have long advocated that it is best to avoid as fast as possible firings because the way controllers work.  They compare the temperatures several times a minute (the number depending on the manufacturer) to determine the rate of increase.  This allows big overshoots at the top temperature with fast rises.  This was reinforced this morning by observing a different factor.
 
I took a piece out at 68°C to put another in.  During the time the kiln was open, the air temperature dropped to 21°C.  I filled the kiln and closed the lid and idly watched the temperature climb before switching the kiln on for another firing.  It took a bit more than two minutes for the thermocouple to reach 54°C with the eventual stable temperature being 58°C.  I had not been aware how long it takes the thermocouple to react to the change in temperature.  Yes, it takes a little time for the air temperature in the kiln to equalise with the mass of the kiln, but not two minutes.
 
With a two-minute delay the recorded temperature can be significantly behind the actual air temperature.  For example, a rate of 500°C per hour is equal to 8.3°C (15°F) per minute or 16.6°C (30°F) overshoot of the programmed temperature. Even at 300°C it is a 10°C (18°F) overshoot.  This effect, added to the way the controller samples the temperatures, means the actual overshoot can be significant for the resulting glass appearance.
 

This is just another small element in why moderate ramp rates can be helpful in providing consistent results for the glass.

Wednesday 25 November 2020

Removing Shelves for Slumping



There are those who advocate removing the kiln shelf(s) before slumping.  The advantages claimed include:

Better heat distribution around mould.  The shelf acts as a heat sink. During the firing the shelf absorbs heat and during the cooling the heat is released, so slowing the cool down. 

Additional height. For kilns with little head room, greater height is provided by this practice.

Observations
My observations on this practice lead me to some questions about the necessity, desirability and in some cases the practicality of it.

Elevation of mould above the shelf
This is a widely recommended practice.  I haven’t found the need, but many people do.  One of the points of this is to allow increased air circulation around the mould and under the bottom.  Another is to let air out from under the bottom of the mould to avoid creating air pockets between the mould and the glass.

If the elevation of the mould allows air circulation, what is the necessity to remove the shelf?  There is air circulation around the bottom of the shelf and of the mould. If the mould is placed on the floor of the kiln, the mould will still need to be raised from the bed of the kiln to allow air circulation under the mould. Of course, if the kiln does not have enough space for the height of the mould, it will be necessary to remove the shelf, but not for circulation purposes.

There is also the fact that the floor of the kiln is most often made of refractory bricks even if the walls and top are of refractory fibre.  This also is a heat sink.  I don’t see the advantage of removing the shelf to avoid a heat sink when the base of the kiln works in holding heat in the same way as the shelf.


Difficulty of removing shelves from some kilns
It is difficult to remove shelves from many kilns.  This can be avoidance of damage to the thermocouple; difficulty of getting fingers around the shelf; weight; size; or even depth of the kiln.  It is impractical to remove the shelves from kilns of this nature.  It is still possible to get a good slump in these kilns.


Uneven cooling of the glass
Research shows long soaks lead to a cooler bottom of the glass than top during the anneal – sometimes greater than the +/- 5°C for adequate annealing.  This is a consequence of the fact that the hot air above the glass is not balanced by the same amount of heat below the glass.  So, there may be good arguments for retaining that heat sink of a shelf under the mould to more evenly balance the cooling of the upper and lower surfaces of the glass during the anneal soak and cool.

Height
I don’t have any argument that when extra height is needed, as removing the shelf will provide some.



Some consideration needs to be given on whether to remove the kiln shelf when slumping.  Research implies that increased cooling of the bottom of the glass may go outside the parameters for the even cooling of the glass.

Wednesday 18 November 2020

Creating Flat Bottoms by Hand


No jokes please!

Often the moulds we use do not have a suitably flat bottom to them, making the resulting item wobble when set on a flat surface.  There are several ways to create a flat spot in the mould, reaching in to re-set the glass while firing, putting the glass in at a complimentary angle for a second firing - but they are not always successful.  

Of course, if you have the money you can use a flat lap or a linisher with a back plate to grind a flat spot on these bowls and other unstable pieces.

But,
You can still make a flat spot on your piece without machine tools.  Use a piece of float glass larger than your piece as your grinding base.  Put a slurry of 100 grit sand on the base and put your piece over.  Holding it level, make circular motions with firm downward pressure.  In only a few minutes you will have produced a large enough flat spot to stabilise your piece.



If you do not like the mess of the slurry, fasten a 100-grit sandpaper onto float glass, add water and do the same as you would with a slurry of grit.


Wednesday 29 July 2020

Measuring for Circle Cutting


Often there is uncertainty about which way the cutting head should be placed on the bar of the circle cutter to get the right diameter.  And the distance markings on the arm often get worn away.

It is for these two reasons that I have given up trying to get the right diameter circle from the measurement markings on the arm of the circle cutter.  Instead I measure and mark out the centre point and the radius of the circle directly onto the glass.  Only a few tools and supplies are needed.


Glass, measuring stick, marker pen, oil and circle cutter are all that are needed to measure the circle


First you need to decide on the centre point, leaving at least 2cm at the edge of the piece the circle is being cut from to allow a clean circle to be broken out.

The four black does are for measuring from the edge to the axis


Once you have done that, mark an axis at right angles at the centre point.

This shows the axis established and the radius marked out on the left.



Measure the radius from centre line , mark that on the line. 




Place suction cup at the centre of the axis. In the case of the cutter I use there are four markings to assist in the centering of cutter.




Move the cutting head along the arm until the wheel sets right on the radius mark.  I find that getting low helps a great deal in seeing the placement of the wheel.




Tighten the locking nut.


I put a drop of cutting oil on the wheel, so that in a preliminary run, I can both see where the scoring line will be and be sure everything is far enough away that the arm does not hit something on the way around.


Score the circle, making sure your fingers are only on the knob. If your fingers slip down, they can loosen the locking nut.  Some people score in an anti-clockwise direction to ensure they do not loosen the locking nut.  An anti-clockwise motion means that if your fingers do touch the nut, it will be tightened rather than loosened.

This photo shows the circle scored and to show the spacing between the edge of the glass and the score line.
Once you have set the cutting head on the arm of the cutter, you can cut as many circles as you wish of the same size without needing to do further measurements.
 
Further information on breaking out the circle is given in this blog post and a more comprehensive guide to measuring and placing all sorts of sizes is given in  Drilling Glass, guide no. 7.

Wednesday 22 July 2020

Crazing




Crazing appears as the multiple cracks similar to what is seen on ceramic glazes.  These occur when there is a great deal of incompatibility between the glaze and the clay body.  This can also be seen in glass.



Crazing as seen on a ceramic object



I have see crazing of glass in two circumstances.  It happens with severe devitrification, to a maximum extent of crumbling under light pressure.  This usually happens with glass not formulated for fusing, and especially on opalescent glass.


The more common occurrence is where the glass has stuck to the supporting structure.  This is frequently the case where the separator has not been sufficient to keep the glass from sticking to the shelf.  This will happen on kiln washed shelves when the coating of the separator has not been even, leaving areas with bare or very thin areas.

The standard of mixing kiln wash in the ratio of 1:5 parts by volume of powder to water is important.  The application should be with a wide soft brush such as a hake brush.  The kiln wash should be painted on in four coats, one in each direction of up, down, and the two diagonals.  A well coated shelf should have an even appearance of the coating.  Only an even film of separator is required to keep the glass from sticking to the shelf, mould or other kiln furniture.