Wednesday 29 January 2014

Stretch Marks in Slumping


Occasionally a slumped piece will develop faint lines beginning about half to two-thirds of the way from the centre and radiating toward the edge.

My experience leads me to think that these marks come from the glass moving too quickly at too hot a temperature. The glass softens as it reaches its slump point. If the temperature is taken above that, the glass conforms to the mould and then begins to slide downwards. The mould is by its nature not perfectly smooth and so the high points make marks on the glass as it moves.

This is re-enforced by the fact that the glass at the centre of these slumps does not have those marks. It deforms less than the edges of the piece and so (at whatever temperature) does not get so marked as the sides and edges.

To avoid these stretch marks you need to slump at the lowest possible temperature and ensure the glass is the same temperature throughout by the time it gets to its slumping point.

Temperature
Finding the lowest temperature for the slumps in a particular mould requires experimentation and observation. A simple curve – circular, oval or rectangular – requires less heat than one with a flat bottom and much less than one with angles. For a simple curve you can set your slumping temperature at say 620ºC with up to an hour soak. The important element to remember is that each shape and curve of mould will require different schedules. To determine this you need to make observations.

The glass for these two moulds requires different temperatures or  schedules. The back one will conform to the mould at a lower temperature than the front one due to the simpler shape and larger span of the back one.


From about 600ºC you need to make periodic observations of the progress of the slump. Note the temperature at which the glass begins to move – the reflections in the glass will begin to be curved. This is the minimum temperature you can use for this span and thickness of glass on this mould. The length of time required to get a complete slump may be so long as to make using this temperature impractical.

Slump not quite complete


Now observations need to become more frequent – possibly every 10 minutes or less. When you reach a temperature where the glass is visibly distorting, it is time to cease the temperature advance and begin the soak. Record this temperature and continue to observe, recording the time it takes at this temperature to fully slump. Continue to the anneal.

Inspect the piece when cool. If you have the result you want, you have the temperature and soak time needed for this thicknesses and size of glass on this mould. Record this information. If it is not fully slumped you can try either extending the time (if that is practical, it is the best option) or increasing the temperature on another piece. This increase should be by no more than 10ºC, so that you do not over fire the piece.

Glass conforms to the bottom of the mould


Of course, it is possible that the piece was slumped at too high a temperature as evidenced by stretch marks, mould marks, uprisings in the centre, distortions on the edges. Then you need to reduce the temperature on the next slumping of a piece of the same dimensions. Start with 10ºC less than your first piece, and programme the same amount of time. Observe, record and inspect as on the previous one.

This process shows why it is important to have a kiln with observation ports to be able to follow the progress of your work. In some ways, it is more important to have observation ports than whether the kiln is front or top loading, coffin or clam shell opening. But that is by the way.

Heat
The second important element in avoiding stretch marks is to enable the glass to be at the same temperature throughout its thickness. This involves the concept of heat work.  In general terms it means you can achieve the same result by putting the heat in fast and at a high temperature or slowly and at a low temperature. The “slow and low” approach allows more control and allows the glass to be the same temperature on top as on the bottom.

It is important to heat the glass slowly and steadily all the way up to the slumping temperature. The temptation to increase the temperature rapidly after the strain point needs to be resisted. Getting the top too hot can at the worst, cause a split on the bottom of the glass as the tension from slumping glass on the top splits the stiff glass at the bottom.

This means there is no need for a soak at the strain point, nor a speed up in the rate of advance up to the slumping temperature. Exactly the opposite is indicated. Choose a rate of advance for the glass according to its thickness – at 6mm a rate of 150ºC will be adequate. Maintain that rate of advance all the way up to the slump temperature. This also is required when you are making observations to determine what the slump temperature should be. The moderate rate of advance all the way to slumping temperature ensures the whole thickness of the glass is at the same temperature.

Heating the glass slowly to enable all of it to be at the same temperature, allows the glass to change shape at the lowest possible temperature and avoid picking up so much of the mould texture. The glass at the edge and upper sides is in contact with mould longer than central parts as it changes shape and slides along the surface of the mould at elevated temperatures. The lower the temperature used with a long soak, means that the glass is less likely to slide along the mould and so adds to the avoidance of stretch marks.

Sunday 26 January 2014

Annealing Range

Among the critical temperature ranges is the temperature around the annealing point. These are known as the strain points. The higher one is the highest temperature that annealing can begin and is the softening point. The lower one is the lowest point at which annealing can be done and is called the strain point. Soaking at any lower temperature will not anneal the glass at all. The ideal point to anneal is the annealing point, because annealing occurs most quickly at this temperature.  This temperature is defined by various characteristics both mathematical and observational. The manufacturer can give this temperature, and most do on their websites.

This annealing range is traditionally calculated as being 40ºC either side of the stated annealing temperature. Your aim should be to spend as little time in the temperatures above the annealing range to reduce the chances of devitrification.

Most glass kilns are not really accurate in recording the temperature within the glass. They are measuring the air temperature. The glass on the way down in temperature is hotter than the recorded temperature. If you do a soak at 515°C for example, the glass is actually hotter and is cooling to the 515° point during the soak. So, long soaks at the annealing temperature are required. Longer for thicker is required. The slow cool to at least 5C below the lower strain point does the annealing, and reduces the risk of inadequate annealing.

Recent research at Bullseye indicates that the use of the fact that temperature readings are above the actual temperature of the glass indicates lower annealing points for thick glass. This has been based on temperature probes at various points within the glass, comparing the glass temperature with the air temperature. The results of their research suggest an annealing soak at about 30C below the annealing point with a long soak, and slow anneal cool for the next 55C.

It is still possible to give the glass a thermal shock at temperatures below the lower strain point, so care needs to be taken in the continued cooling. But no further annealing will take place. If you do not anneal properly, the glass will break either in the kiln or later no matter how carefully you cool the glass after annealing.

Saturday 25 January 2014

Maintaining a Single Colour on the Edge

The piece in the middle distance shows the different colours of the two layers


Keeping the edge one colour on a two or multiple colour piece can be done by cutting the upper layer larger than the lower one(s). If you are making a 6mm thick piece, the upper piece needs to be 3mm larger all around. So if you have a 300mm diameter base piece, the top will need to be 306mm in diameter. This allows a coloured top to bend over a clear base, giving the appearance of a single colour throughout.

However if you are building thicker than 6mm and are willing to allow the glass to flow, you do not need to add the full thickness of the glass to the size of the capping piece. I find that at 9mm thick, I need only 4mm all around to cover the layers. This may be because the outer edges are nearer 6mm than 9mm thick.

Of course, if the final piece needs to be a pre-determined size the lower layers can be cut 3mm smaller than the top all around (for 6mm thick pieces).  The top is cut to the final size of the piece.

Wednesday 22 January 2014

Glass Dust


This is from Greg Rawls' website.  He is a glass worker and a certified industrial hygienist. A huge amount of practical information on safety in glass working is available on his web site:


Ground Glass

OSHA classifies glass dust as a “Nuisance Dust”. Ground glass does not cause silicosis. You can wear a respirator if you are concerned about exposure.

Glass is made from sand, which contains silica - a naturally occurring mineral silicon dioxide (SiO2). Crystalline forms of silica, also known as “free” silica, can contribute to the development of silicosis under prolonged exposure conditions.

It is important to understand the difference between glass and crystalline silica because exposure outcomes are extremely different! Glass is a silicate containing various other ingredients which have been melted and upon cooling form an amorphous, or non-crystalline structure. While silica (SiO2) is a primary ingredient in the manufacturing of glass, when glass is formed under heat, the crystalline structure is changed to an amorphous structure and is no longer considered crystalline.

Ground glass is rarely respirable because the particle is too big. Always use wet methods when grinding glass! Water captures the dust. Sometime other chemicals are used to add colour to glass such as arsenic, lead, cadmium. These are usually present in low concentrations and are bound to the glass and not readily available but could present an exposure issue under some circumstances.

Wednesday 15 January 2014

Observation Ports for Kilns


Observation Ports for Kilns

When choosing a kiln, an often overlooked element is the observation ports. These openings in the side or top of the kiln enable you to observe the progress of your work during a firing without opening the kiln lid or door. They have ceramic or fibre plugs to keep the heat in the kiln when you are not using them to observe what is happening. 

A kiln with a very large quartz observation panel
Some newer kilns are built with quartz observation panels in the kiln. These serve the same purpose as the ports, but without the (small) additional heat loss.


When doing any new work it is important to observe the progress of work, rather than just hope for the best and see what has happened after the whole process is finished. Observation can tell you when the piece has reached the desired stage and progress to the next part of the programme.

A port located too high to be of use for observation of the interior.  It is sealed with a ceramic fibre plug.

The location of the port is important. You need to be able to see the relevant part of the kiln or they are useless. 
This relatively large kiln has two ports, one at the center of the door, and one on top.  The top is mostly for ventilation.  The one in the door may be too high to observe work while firing unless the shelf is put up on tall kiln furniture


Although a small kiln, the observation port at the top is not so useful as one at the side.



A popular kiln with an appropriately placed observation port.  Often these have an additional one on the side opposite the controller. 



 Some kilns have multiple ports to make observation of various parts of the kiln easier.



There are a variety of shapes of these ports. The shape is not so important as the location and what can be viewed within the kiln through the ports.

A round port, but probably too low to be of much use

A rectangular port viewed from the inside showing the field of view that can be allowed

A kiln with multiple square ports


If your kiln has come without a port or one that is not placed where most suitable for your use, you can drill the casing and brick or fibre to provide another viewing port.  Make a ceramic plug or wad up ceramic fibre blanket to fill the hole when it is not in use.

Wednesday 8 January 2014

Boiled Glass



This is a technique that will obtain a random, organic feel to glass that would otherwise be scrap (cullet) – remembering that you have to use compatible glass throughout. The principle is to take the temperature up high enough for the glass to begin to flow easily and bubbles to blow through and burst.

The results can be used as they come out, or they can be cut to provide points of interest in other work, or the glass pieces can be damed before firing to obtain thick pieces which can be cut into slices for other work. And I am sure, there are numerous other ways to use the resulting glass too.

The effects are rather like colourful molten rock with gases bubbling through. These bubbles mix the glass colours. So you need to be sure you do not use a wide variety of colours, or your result will be similar to the molten rock - muddy. Use a few contrasting colours, and ensure you include a significant proportion of white to maintain bright colours. Also remember that the hot colours – reds, yellows, oranges – opalise at high temperatures, so the transparents can be used as opals.

You can use whole sheets of glass or scraps. In either case, it is useful to start with a clear base to help avoid picking up kiln wash when the glass is moving about. The glass must be clean to reduce the incidence of devitrification. Stack you glass on top of the base glass in what ever order you like. Contrasting colours alternated give a strong result.

You can put shelf paper of 0.5 mm or thicker on the shelf or simply kiln wash the shelf with several layers of wash until the shelf surface is no longer visible through the wash. Use of thinfire is not recommended as the powder can be pulled into the glass.

If you do not dam the area to contain the glass calculate how far the glass will expand on the shelf, so that you do not put down too much glass and have it spill over the edge of the shelf.  

You can use bubble powder onto the base layer to promote the bubbling during the firing. However, if you are using cullet, you can just take the temperature up rapidly without a bubble squeeze, which will give you plenty of air pockets to burst through the layers of glass.

You can take the temperature up at about 300ºC per hour to 925ºC with no bubble squeeze and soak for 10 – 15 minutes. Then allow the kiln to drop the temperature as fast as possible to about 815 and soak there for around 30 minutes to allow the little bubbles to rise to the surface an burst too. Then reduce to the annealing temperature and soak for the thickness you calculated in preparation for the firing.

Precautions
You need to be careful in firing and annealing pieces using this glass. Any glass that has been fired to a high temperature tends to begin changing compatibility. So you need to be careful on your rates of advance, and on the annealing and cooling portions of the firing when using the glass in other projects. You may want to consider using a schedule for twice the thickness of the piece on subsequent firings.

There may be devitrification on the surface. You should sandblast or abrade away this devitrification in some way to be able to get a shining surface when you fire polish.

There may also be a number of pin hole sized bubbles at or just below the surface. These will close with a fire polish also.

Wednesday 1 January 2014

Lead Corrosion in Acids

Lead forms a protective film, which if undisturbed preserves the metal below this layer.


The corrosion resistance of lead is based on its ability to readily form a tenacious coating of a reaction product. This then becomes a protective coating. Protective coatings on lead may form as the result of exposure to sulphates, oxides, carbonates, chromates, or chemical complexes.
Handbook of Corrosion Data, by Bruce D Craig, p26

Lead is resistant to corrosion especially “with solutions containing sulphate ions, such as sulphuric acid.”

However, the new or bright metal reacts quickly with a variety of alkalis and many organic (although not most inorganic) acids.  ...Lead is not stable in nitric and acetic acids, nor in alkalis. The metal does not resist nitric acid. Lead corrodes rapidly in acetic and formic acids.” (Handbook of Corrosion Data, by Bruce D Craig, p.29)

Lead has very limited resistance to acetic acid.... Dilute [acetic acid], even at room temperature attacks lead at rates exceeding 1.3mm/year. These rates increase rapidly with increasing aeration and velocity However … acetic acid … has little effect at strengths of 52% to 70%.


The corrosion rate in acid increases rapidly in the presence of oxygen and also in oxygen in combination with soft waters such as rain and distilled water. Corrosion increases at the rate approximately proportional to the oxygen content of the water.”
Handbook of Corrosion Data, by Bruce D Craig, p.26, 29

This another good reason to avoid vinegar as a cleaning agent for leaded windows.



Lead dissolves in organic acids (in the presence of oxygen). Lead also dissolves in quite concentrated alkalis (≥10%) because of the characteristic of the lead salts that can act as either an acid or an alkali. These salts are soluble in the presence of water and oxygen.

Alkali salts are soluble hydroxides of alkali metals and alkali earth metals, of which common examples are:
  • Sodium hydroxide (often called "caustic soda")
  • Potassium hydroxide (commonly called "caustic potash")
  • lye (generic term, for either of the previous two, or even for a mixture)
  • Calcium hydroxide (saturated solution known as "limewater")
  • Magnesium hydroxide is an example of an atypical alkali since it has low solubility in water (although the dissolved portion is considered a strong base due to complete dissociation of its ions).


Although this has been a rather technical posting, these data show that lead is subject to rapid attack by both organic (and some inorganic) acids and alkalis in relatively low concentrations when in the presence of aerated water. However in normal environmental conditions the protective reaction layer avoids much of this vulnerability.


Wednesday 18 December 2013

Tack Fusing Considerations

1 – Initial Rate of Advance

Tack fuses look easier than full fusing, but they are really one of the most difficult types of kiln forming. Tack fusing requires much more care than full fusing.

On heat up, the pieces on top shade the heat from the base glass leading to uneven heating. So you need a slower heat up. You can get some assistance in determining this by looking at what the annealing cool rate for the piece is. A very conservative approach is needed when you have a number of pieces stacked over the base layer.  One way of thinking about this is to set your initial rate of advance at approximately twice the anneal cool rate. More information on this is given in this entry



2 – Annealing 

The tacked glass can be considered to be laminated rather than fully formed together. This means the glass sheets are still able, partially, to act  as separate entities. So excellent annealing is required.

Glass contracts when it's cooling, and so tends to pull into itself. In a flat, symmetrical fuse this isn't much of a problem. In tack fuses where the glass components are still distinct from their neighbours, they will try to shrink into themselves and away from each other. If there is not enough time for the glass to settle into balance, a lot of stress will be locked into the piece that either cause it to crack on cool down or to be remarkably fragile after firing. In addition, in tack fusing there are very uneven thicknesses meaning it is hard to maintain equal temperatures across the glass. The tack fused pieces shield the heat from the base, leading to localised hot spots on cool down.

On very difficult tack fuses it's not unusual to anneal for a thickness of four to six times greater than the actual maximum thickness of the glass. That extended cool helps ensure that the glass has time to shift and relax as it's becoming stiffer, and also helps keep the temperature more even throughout.

So in general, tack fused pieces should be annealed as though they are thicker pieces. Recommendations range from the rate for glass that is one thickness greater to at least twice the maximum thickness – including the tacked elements – of the whole item. Where there are right angles - squares, rectangles - or more acutely angled shapes, even more time in the annealing cool is required, possibly up to 5 times the total thickness of the piece.

It must be remembered especially in tack fusing, that annealing is much more than the annealing soak. The soak is to ensure all the glass is at the same temperature. The anneal cool over the next 110ºC is to ensure this piece of different thicknesses will all react together. That means tack fusing takes a lot longer than regular fussing.



3 – Effects of thicknesses, shapes, degree of tack

The more rectangular or pointed the pieces there are in the piece, the greater the care in annealing is required. How you decide on the schedule to use varies. Some go up two or even four times the total thickness of the piece to choose a firing schedule.

A simplistic estimation of the schedule required is to subtract the difference between the thickest and the thinnest part of the piece and add that number to the thickest part. If you have a 3mm section and a 12mm section, the difference is 9mm. So add 9 to 12 and get 17mm that needs to be annealed for. This thickness applies to the heat up section as well.

Another way to estimate the schedule required is to increase the length the annealing schedule for any and each of the following factors:
·         Tack fusing of a single additional layer on a six millimetre base
·         Rectangular pieces to be tack fused
·         Sharp, pointed pieces to be tack fused
·         Multiple layers to be tack fused
·         Degree of tack – the closer to lamination, the more time required

The annealing schedule to be considered is the one for at least the next step up in thickness for each of the factors. If you have all five factors the annealing schedule that should be used is one for at least 21mm thick pieces according to this way of thinking about the firing.

4 – Testing/Experimentation

The only way you will have certainty about which to schedule to choose is to make up a piece of the configuration you intend, but in clear. You can then check for the stresses. If you have chosen twice the thickness, and stress is showing, you need to try 3 times the thickness, etc. So your annealing soak needs to be longer, if stress shows. You can speed things by having your annealing soak at the lower end of the annealing range (for Bullseye this is 482C, rather than 516C).

You will need to do some experimentation on what works best for you. You also need to have a pair of polarisation filters to help you with determining whether you have any stress in your piece or not. If your piece is to be in opaque glasses, you need to do a mock up in clear.


Sunday 15 December 2013

Pot Melts – Weight of Glass Required

Circular pieces
This table assumes that a 150 mm diameter pot is being used, and assumes that 125 grams of glass will be left in the pot. Larger diameter pots or even pot trays can be used, but more glass will remain in the container. The following table gives the desired diameter of the melt and the weight of glass needed to achieve an average 6 mm thick result. To achieve a uniform six millimetre thick disk will require long soaks at both melting and fusing temperatures to allow the glass to even out in thickness.

50 mm diameter disk requires 154 grams of glass
100 mm diameter disk requires 243 grams of glass
150 mm diameter disk requires 390 grams of glass
200 mm diameter disk requires 596 grams of glass
250 mm diameter disk requires 861 grams of glass
300 mm diameter disk requires 1185 grams of glass
350 mm diameter disk requires 1568 grams of glass
400 mm diameter disk requires 2015 grams of glass

Thicker melts
Of course if you want a thicker pot melt — one that is confined so that it cannot grow larger, only thicker — you can use the following method to estimate the amount of glass required.

Choose the diameter wanted from the above table, and subtract 125 from the weight of glass required. Then multiply by thickness wanted divided by 6 mm. Add back 125 gms — the amount that will be retained in the pot — and you have the required amount.

For example: a 200 mm disk of 6 mm requires 596 gms. You want a 12 mm thick disk of 200 mm.
First subtract 125 from 596 to get 471 gms. 417 gms times 12 equals 5652. Divide this by 6 mm and you have 942 gms required. Add 125 gms — the amount left in the pot — and you have a requirement of 1067 gms for a 12 mm thick disk of 200 mm.


Rectangular pieces
These are easier to calculate than discs, as the calculation is length times height times depth (all measurements in centimetres).  

If you are making a billet and using an empty margarine pot of 7 cm wide, 12 cm long and 7 cm high you will need enough glass to fill a volume of 588 cubic centimetres.  As the specific gravity of glass is 2.5, you multiply the cubic centimetres to give the weight required in grams — in this case, 1470 gms.

If you wanted a 6 mm tile of 100 mm square you would need 150 grams of glass.

To make a 1 cm slab of the same size you need 250 grams of glass.

To make a billet of 5 cm by 10 cm square you need 1250 grams of glass (this is pretty close the the maximum that can be loaded in a 12 cm diameter Pot).

To make a small sample billet of 2 cm thick by 4 cm by 8 cm you need 160 grams of glass.

A billet or pattern bar of 5 cm by 10 cm by 5 cm needs 625 grams of glass.

Wednesday 11 December 2013

Supporting Overhangs on Moulds


In general, the blank should be no larger than the thickness of the glass over the mould. So a 6mm blank would have no more than 6mm overhang.

In the case of steep sided moulds, the glass should be entirely within the mould to avoid any hangup on the edge, leading to uneven slumps and needling on the edges.

But, if you need the glass to be the size of the mould, you can make a collar to go around the mould, which will support the glass while it begins to slump into the mould.

Make a donut shape that will fit around the mould (whether round, oval or rectangular) and extend beyond. Support the collar on kiln furniture to be as high or slightly higher than the top of the rim of the mould. This makes a kind of drop out ring, allowing the glass to drop into the mould.




Donut ring suitable for placing around a circular mould

This arrangement is suitable for placing around a mould of the same diameter as the interior of the ring

Make sure that the collar is well covered with kiln wash to ensure the glass can move along the fibre board. This includes both the surface and vertical edges of the collar.

As the glass softens and begins to fall into the mould, the glass at the edge does not have the weight to bend down and so raises off the collar and begins to slip into the mould.

And finally, you need to ensure that the mould is not so steep as to trap the glass inside. This is more of a concern on steel with its greater expansion and contraction than ceramic.

A steel mould likely to trap the glass inside with its vertical sides

Wednesday 4 December 2013

Super Glue


Super Glue
There are multiple cyanoacrylates (superglues) on the market, and they will give very different results. Gel superglue formulations usually have some type of rubber or fumed silica additive to make them thicker, and the additive usually doesn't burn out. That's probably where the "superglue leaves a mark" originates. Usually the cheapest possible superglue is best for temporary glass holds because it'll mostly be additive-free.

The glue will burn out around 700F or so, so it shouldn't be used to position the glass against gravity. I disagree, however, that it should never be used. I buy cheap superglue by the carton and use it in everything from temporary casting assemblages to making glass boxes for frit panels to tack-fusing. It is the best way I know to hold wobbly pieces in place until you can assemble the rest of the glass around it.

Some tips for using superglue:
  • You are more likely to get whitish residues if you let moisture get to the superglue while it's drying, so keep the glass surfaces as dry as possible and don't put a superglue-assembled piece on a wet kiln shelf.

  • Always try to put the glue under opaque or dark glasses, just in case something goes wrong.

  • Use the smallest amount possible. Don't flood an area with glue and lay the glass on top - that will almost always leave too much glue on the glass. Instead, I assemble the glass and put a drop of glue right where the two glasses join. Capillary action sucks just the right amount of glue into the joint.

  • If you wipe excess glue away with acetone, be careful about which acetone you're using. Some types (such as nail polish remover) can have additives that leave residues on the glass and make the problem worse. If the glue is in a readily accessible area, it is usually better to wait for it to dry, then peel it off the glass with a razor blade. Only use acetone where there's texture or something else that makes the glue difficult to remove. And in any case, don't worry much about removing superglue right on the surface--it will burn off.

  • Superglue joints will NOT support the weight of your glass, i.e., never, ever lift your assemblage by a superglued-on piece of glass. Common superglue is actually a lousy glue for glass--which is why it works as a temporary hold.

Wednesday 27 November 2013

Disguising Joints in Fusing


One advantage of fusing over leading or copper foiling is that shapes impossible to cut as a single piece can be made from multiple pieces. However these joints often show up in the finished work.

You are always more likely to have the joints show when the cut coloured glass is on the bottom. The infra-red heat of the kiln elements goes through the clear glass to the coloured below, allowing it to soften first. As the glass underneath softens and pulls in, it allows the top glass to sink into the space. Upon cooling the seam is kept open even sometimes showing a clear line at the joints.

Putting the clear as the base and the jointed pieces on the top has a better chance of having the joints fully fuse together. There is no glass above to spread the pieces apart.

When you need the joints to be concealed, you can put a line of powder the same colour of glass over the joint. This line should be slightly rounded above the surface along the joint to account for the reduction in volume as it fuses. When it is two colours meeting, using powder of the same colour as the darker glass is most successful.

Fusing to a contour fuse for 10 minutes is normally hot enough, but taking the piece to a flat fuse – again for 10 mins - will certainly be enough to fully melt the powder into the joint.

Sunday 24 November 2013

Installing Leaded Glass in Stone

Side rebates
One side of the rebate (or raggle) in stone should be deeper than the other. This allows the panel to be slotted in and then slid back into the shallower rebate. Which side the deep rebate is on is not important, but you must determine which is the deeper and its minimum depth all along the raggle.

Adjusting the placement of the panel
To help move the panel from side to side stiff oyster knives and lead knives are important. This allows you to get behind the edge and slide the panel to the side, especially when it is sitting on top of another panel to make the fine adjustments to get the lead lines flow correctly.

In some circumstances, especially when installing a single panel, it is necessary to bend the leaves of the lead toward the installation side. After placing the panel, you then fold the leaves out one at a time into the raggle slot.

Top and bottom rebates
For the top and bottom rebates it is important that the top is the deep one. You insert the panel up into the slot a the top and let it settle into the bottom rebate. The panel should be completely covered by the stone.

Extra came
In all installations into stone, you should carry extra came of at least 12mm (1/2”) to solder round the panel when the stone work is not as accurate as it should be, either through workmanship or weathering.

Wedges
Have some little blocks of wood and some whittling tool to hand to wedge the panel in till mortared. It is possible to use little scraps of lead for the purpose. These wedges don't need to be that robust, they are just there to hold the panel in place until the mortar is in.

Mortars
Mortars for stone should be of lime cement, or sand mastic. Don't use silicon, you'll never get it out again! Also don't use putty as this stains some types of stone and the oils leech in to the stone, causing the putty to dry and therefore the window ceases to be watertight.

Wednesday 20 November 2013

Brushes for Painting


A quality paint brush will have hairs that form a point and have a good spring to them - they bend while painting but return quickly to their original shape. A good brush will also hold lots of paint and deliver that paint evenly throughout the stroke. Brushes usually have a number to indicate their size - the larger the number, the larger the paintbrush. The larger the brush the wider the line that can be produced, although with a light touch a fine long line can be made because of the pointed nature of the brush.

The best brushes are made from natural hairs, although there are brushes made from a combination of natural and synthetic materials which are adequate.

Sable hair brushes are considered to be the best for painting. The hair comes from a variety of pine martin and the Kolinsky sable from Siberia is considered the best. These brushes are more expensive than others, but are soft and flexible, hold their paint well and can make an expressive thick to thin line.

Ox hairs are normally used for making rigger brushes. This is a round brush with long hairs, said to be used to paint the lines of ships' rigging in the past. The hair is strong and springy making it useful for long lines and thicker paints.

Squirrel hair brushes are useful for applying paint in broad, thin layers for matting.

Goat hair brushes are normally known as hake brushes. These are a traditional, oriental style brush. It lacks spring, but forms a good point and so is useful to cover larger areas quickly with a gentle touch.

Pony hair is made into short round brushes used as soft stipplers.

Hog hairs are made into hard, very economical brushes. They come in flat and round shapes. They are most used for stippling and can be trimmed, shaped, used, and abused for years.

Badger hairs are thicker at the end and thinner at the root, creating a conical shape. These soft brushes are used to blend paint once it has been spread on the glass. The brush is swept across the surface of the paint to blend or move paint and remove stroke lines.

Wednesday 13 November 2013

Glass Shifting on Mould


There are a number of things to investigate if your blank is shifting on the mould during firing.

Is there a heat differential?
Glass absorbs heat at different rates depending on colour and type meaning that one part may begin to move before another. The solution to this is to slow down the rate of advance to allow all the glass to gain heat at the same speed. It may also be useful to slump at a lower temperature.

There also may be a heat differential within the kiln. You need to run a check on the heat distribution of your kiln to be sure where the (relatively) hot and cold areas of your kiln are. Bullseye published Tech Note no.1 on how to do this.


Not perfectly balanced on the mould?
Glass can be placed just off square or level and that can allow it to start slumping unevenly. Measurements and observation can help to get the glass placed squarely on the mould. Also a small spirit level placed on the glass can tell you if the glass is level within the mould.


The mould may not be level.
The kiln, shelf and mould should each be checked for level in all directions. The kiln level can be established and can be assumed to be level until it is moved. The shelf level should be checked each time it is moved. The mould level should be checked each time it is used.


Is the glass overhanging the mould?
Glass overhanging the mould rim can hang up on some of the edges more than others. Check the rim of the mould for any rough areas and smooth them. If you do have glass overhanging, you should slow the rate of advance to allow the edge of the glass to tip up and begin to slide down into the mould. If the problem persists, make the glass blank smaller, or support the overhanging glass with a collar.


Is the glass heavier on one side?
The glass may be uneven thickness and so heavier on one side. The heavier area of the glass will begin to slump first and so promote movement of the whole glass in an asymmetrical manner. The solution to this is to fire slower and to a lower temperature.


Do you have a wonky mould?
The mould can be imperfect. So you need to check the mould for accuracy. I have a slumper that has one side lower than the other three. Being aware of this, I can place the glass so that it is still useable. Measuring the mould in all directions will help determine its symmetry.


If all these things have been investigated and the solution not found, it is possible to create a bevel on the bottom edge of the glass so that the edge sits in the mould at the same angle as the mould. This provides a larger contact point for the glass and mould than just a thin edge. This appears to allow the glass to move evenly during the slump.

Of course, a major solution is to observe the slump.  Peeking into the kiln at the beginning of the slump soak and frequent intervals after that will show if the piece is slumping evenly or not.  If it is uneven, you can put on the appropriate protective gear and with gloves on your hands, shift the glass to be set evenly in the mould.

The major solutions to avoid uneven slumping are:
  • Avoiding the hot and cool parts of the kiln
  • Making everything level
  • Careful placement on the mould
  • Slower rates of advance
  • Lower slumping temperatures
  • Observation

Wednesday 6 November 2013

Using Space on Shelves


Often there is unused space on the kiln shelves when you are firing a project. With a bit of planning, you can make use of the spaces for a variety of things.

Frits fired on fibre paper

Bowl made from frit balls

You can place piece of frit in the clear areas to make frit balls.




You can make colour tests on plaques of glass to see the results of strikers, powder combinations or results of various depths of colour.


Compatibility tests can be done with pieces of glass of which you are not certain.


simple stress testing set-up

Strip of fired glass samples for testing

Results - those with halo are stressed

In the same way, annealing tests can be conducted.




You can fire small pieces of jewellery at the same time as your larger pieces.


You can also prepare elements for incorporation into other fusing projects and lay them out in the open spaces on the shelf.  Your use of the spare space is related both to your imagination and to your future projects.