Showing posts with label separators. Show all posts
Showing posts with label separators. Show all posts

Wednesday, 24 April 2024

Is there a best separator?

 Is there a best separator?

Kilnforming separators

Separators for kiln forming come in various forms. Chemicals, liquids, sprays, refractory fibre paper, kiln wash, and others I suppose. Which is best?  Each separator has its uses. No one is useful in all circumstances.  Some will be best for one circumstance and others for another.

Boron nitride



Boron nitride (BN) is a high temperature lubricant. It can be sprayed or brushed onto the mould. It adheres to smooth non-absorbent surfaces.  BN is among the most expensive of separators for glass. It seems most useful on detailed, texture and casting moulds. BN is often recommended for steel moulds as it adheres to it better than kiln wash.  Although kiln wash will work as a separator on steel, boron nitride is easier to apply.  Various conditions apply to its use

Kiln wash



Kiln wash works well on slightly absorbent surfaces – ceramic moulds, and shelves, for example. It is the least expensive form of separator.  It is shipped as a powder to which five parts water is added to one of the powder.  This makes a liquid that can be applied to any appropriate surface.  It can be sprayed or brushed. The mix can be with less water on very absorbent surfaces, showing some of its flexibility. 

Almost all kiln washes contain kaolin which helps keep the alumina hydrate in suspension.  But most importantly, allows the solution to be applied evenly.  However, the same kaolin also slowly changes to a crystalline substance by 900ºC/ 1650º that sticks to glass. It needs to be re-applied after every full fuse.

Refractory fibre paper



Shelf paper works well on flat surfaces and simple moulds.  It is a moderately priced separator.  Two of the popular trade names are Papyros and Thinfire.  They both contain alumina hydrate but with different binders.  They provide a smooth surface for the shelf and cylindrical shapes. They are not so good at separating glass from irregular surfaces and incised details.  The shelf paper disintegrates after firing. Although it can sometimes be used several times if undisturbed.  The resulting powder is an irritant and should be disposed of carefully.

There are thicker refractory fibre papers.  These normally range from 0.5mm to 6mm.  Thicker versions are called blanket.  These have the same characteristics as shelf papers, although coarser.  They also do not use binders to keep them together.  These are most useful in forming moulds and insulating glass from rapid temperature changes.

 

The general statement is that there is not one separator that is best in all circumstances.  Each has its strengths.  Knowledge of the objective of the firing and its conditions will help in choosing the right one.

Wednesday, 26 October 2022

Kiln wash beading up

Sometimes kiln wash does not seem to want to stick to the mould.  There are several possible reasons. The main two seem to be a hard spot in the slip cast moulds that we use.  Another is the previous use of boron nitride or other sealant of porous surfaces.

The remedies are different for these two causes.  For hard spots you can add a bit extra kiln wash to the area.  Normally enough separator adheres to the spot to avoid sticking.  This is so even though you can see the spot more clearly than the rest of the mould.

Sealed surfaces present a little more difficulty.  It is possible to carefully sand blast off the boron nitride from the surface using low pressure and very little abrasive.  This works well for textured surfaces, if you are careful.  You can also manually sand the sealant off which works better for regularly shaped smooth surfaces.   The object of both these processes is to remove the sealed surface to reveal the porous material again.  You must remember that you are removing some of the surface of the mould in these abrasive processes.  Once removed kiln wash can be applied as before.

If neither abrasive method works, it does not mean the mould is ruined.  You can continue to use boron nitride.  Or, if you want to avoid the costs of boron nitride, you can sprinkle fine dry kiln wash over the mould.  You should give the mould a final application of boron nitride before using the dry kiln wash.

Wednesday, 19 October 2022

Kiln Wash Mix

There seems to be a view that the exact consistency of the kiln wash mix is important.  Within limits the mix proportions are not vital.  The general recommendations from manufacturers is one part powder to five parts water – both by volume.  This is a good guide for general use.

 

It is possible to make the kiln wash mix too thick.  If it goes onto the shelf or mould in a pasty fashion it is too thick.  A thick mixture leaves definite streaks and uneven levels that are difficult to smooth and level.  If you get these effects, scrape it off and put it into a jar with more water.  Mix until it is creamy to avoid lumps.  Then add more water until you have a very liquid mix.  It needs only be a little less runny than plain water.

 

Is it possible to have too thin a mix of kiln wash?  I suppose it is, but not likely.  If you feel it is too thin, you only need to add more coats of the mix until the shelf surface is obscured. Often when the mix seem thin, it is because the powder has separated from the water.  It is necessary to stir the kiln wash thoroughly to get all the solids in suspension.  Then frequent stirring during the application is necessary to keep the mix even at both the top and the bottom of the container.  Storing the mixed kiln wash in a clear container will enable you to see if kiln wash is still settled on the bottom.

 

The object of the kiln wash is to provide a separator between the supporting surface and the glass.  It needs to be only a film of separator to be effective.  In fact, if the kiln wash is too thick, it will flake and stick to the back of the glass.  In the case of kiln wash - more is definitely worse.

 

For very absorbent materials such as vermiculite or fibre board, I mix kiln wash thicker – about 1:3.  The idea behind this is to reduce the amount of water the mould absorbs.  With less water in the mould, less drying time is needed, especially with a vermiculite mould, where steam pressure could break the mould.

Wednesday, 15 September 2021

Digest of Principles for kiln forming

Some time ago people on a Facebook group were asked to give their top tips for kiln forming.  Looking through them showed a lot of detailed suggestions, but nothing which indicated that understanding the principles of fusing would be of high importance.  This digest is an attempt to remind people of the principles of kiln forming.

Understanding the principles and concepts of kilnforming assists with thinking about how to achieve your vision of the piece.  It helps with thinking about why failures have occurred.

Physical properties affecting kiln work

Heat
Heat is not just temperature. It includes time and speed.

 Time
       The time it takes to get to working temperatures is important.  The length of soaks is significant in producing the desired results.

 Gravity
       Gravity affects all kiln work.  The glass will move toward the lowest points, requiring level surfaces, and works to form glass to moulds.

 Viscosity
       Viscosity works toward an equilibrium thickness of glass. It varies according to temperature.

 Expansion
       As with all materials, glass changes dimensions with the input of heat.  Different compositions of glass expand at different rates from one another, and with increases in temperature.

       Glass is constantly tending toward crystallisation. Kiln working attempts to maintain the amorphous nature of the molecules.

 Glass Properties
·        Glass is mechanically strong,
·        it is hard, but partially elastic,
·        resistant to chemicals and corrosion,
·        it is resistant to thermal shock except within defined limits,
·        it absorbs and retains heat,
·        has well recognised optical properties, and
·        it is an electrical insulator. 

These properties can be used to our favour when kiln working, although they are often seen as limitations.

Concepts of Kiln Forming
Heat work
       Heat woris a combination of temperature and the time taken to reach the temperature.

 Volume control
       The viscosity of glass at fusing temperatures tends to equalise the glass thickness at 6-7mm. 

 Compatibility
       Balancing the major forces of expansion and viscosity creates glass which will combine with colours in its range without significant stress in the cooled piece.

 Annealing
       Annealing is the process of relieving the stresses within the glass to maintain an amorphous solid which has the characteristics we associate with glass.

 Degree of forming
       The degree of forming is determined by viscosity, heat work and gravity.  These determine the common levels of sintering, tack, contour, and full fusing, as well as casting and melting.

 Separators
       Once glass reaches its softening point, it sticks to almost everything.  Separators between glass and supporting surfaces are required.

 Supporting materials
       These are of a wide variety and often called kiln furniture.  They include posts, dams, moulds, and other materials to shape the glass during kilnforming.

 Inclusions
       Inclusions are non-glass materials that can be encased within the glass without causing excessive stress.  They can be organic, metallic or mineral. They are most often successful when thin, soft or flexible.

A full description of these principles can be found in the publication Principles for Kilnforming