Showing posts with label Multiple layers. Show all posts
Showing posts with label Multiple layers. Show all posts

Wednesday, 17 June 2020

Firing Uneven Layers



There are a number of people firing stacked layers of glass in a pyramidical fashion to melt the layers down, in a nod to the 1950’s.

Annealing of a full fused platter of this nature is easier than a tack fused one. The degree of contour still in evidence will be important in determining what the annealing schedule should be.

Full or Tack Fuse




In this example shown by Vicki Urbich there are at least four layers - five if the base is two layers, although in this case there is only one.  A full fuse at 800°C will not be enough to give a flat piece for a trivet or platter.  You could extend the soak at 800°C but, it is better to go to 816°C for ten minutes rather than an extended soak at lower temperatures to avoid devitrification.

Damming
The edges of this piece will be wavy, unless dammed, because of the uneven layering.  Placing dams around will give crisp edges to the piece, even though the stacked pieces will round and spread. 

Annealing stacked pieces
Anneal this set-up for at least 9mm for a full fused piece. The pieces will spread and attempt to fill the gaps between the stacks.  Even with an 816°C fuse, the pieces will not be perfectly even in thickness.  To be safer, and account for the remaining unevenness, anneal as though it were 12mm thick.  Other lay-ups will have slightly different requirements.

If it is to be tack fused, you will need to anneal considering the different thicknesses across the piece.  You will have nearly 12mm thick at the thickest and only 3mm at the thinnest.  The generally accepted recommendations are to anneal for twice the thickest part - 24mm in this case.

The anneal is more than the length of soak. It is a combination of the soak and the rate at which you cool to at least 370°C. The cooling rate is directly related to the length of the soak.  If you require twice the length of soak at the temperature equalisation soak, you will require half the speed of anneal cool.  The Bullseye Chart forAnnealing Thick Slabs will give you the relevant rates regardless of the glass you are using. The temperature points will change for other glasses, of course, but the rates remain the same.

Rate of Advance
The earlier problem this lay-up gives you is the heat up to avoid thermal shock. 

The heat up of 4 layers of glass stacked on a single or even two-layer layer base is more difficult than for even layers across the whole piece. Each upper piece shades the heat from the lower ones, making for cool and hot areas next to each other.  With four layers, each layer needs to heat through to transfer its heat to the one below.  This means the bottom of the stack will take a long time to become as hot as the top layer.  Meanwhile, the uncovered glass is getting as hot as the top of the stack.  This often leads to the bottom layers breaking from the stress of the uneven heating.  

Graham Stone suggests 100°C (180°F) per hour for four, even layers. As this is four uneven layers, the rate of advance should be at least half that. This should be used all the way up to the bottom of the bubble squeeze to allow all the glass to heat at the same rate. Glass generally reacts better to a slow, steady contant rate of advance in heat, than faster rates with multiple soaks.

Bubble Squeeze
The bubble squeeze for this single layer base piece can be as quick as 50°C per hour over the 50°C range.  It does not need to be slower, as the weight of the stacks pushes the air out between layers more quickly than large, even and lighter layers.  A double layer base requires a slower bubble squeeze because the weight of the stacks will push the air out to be between the two base layers.  This means a rate of 30°C or even 25°C through the range.

Then you can go faster to the top temperature.

Firing uneven layers requires extreme care on the initial heat up to avoid thermal shock.  A high fusing temperature is needed to get an even thickness across the piece.  Annealing is easier to calculate for even pieces, but must be much more cautious for tack fused items.


More detailed information is available in the e-book: Low Temperature Kilnforming.

Wednesday, 22 April 2020

Bubble Squeeze for Multiple Layers


Difficulties often occur with bubble formation within pieces composed of several layers. There are a couple of factors in addition to the number of layers that have an influence - temperature and rate of advance to the bubble squeeze temperature.

Temperature
The top temperature for the bubble squeeze does not need to change with multiple layers. It is the advance to the bubble squeeze that needs to change in relation to the number of layers.

Rate of Advance
It would  be suitable to reduce the rate of advance to about three-quarters of the two-layer schedule to account for three layers.  And a reduction to one half of the two-layer schedule for a four-layer piece would be appropriate. The reasons for these slower rates of advance follow.

A normal rate of advance for two even layers would be about 200°C per hour to the bubble squeeze temperature.  Sometimes a very slow rate of advance is used from 50°C below the top of the bubble squeeze.  This strategy can continue to be used for thicker pieces made up of many layers with some modifications.

Multiple Layers
But for a three-layer piece, slowing the rate of advance to about 150°C is important to assist in a good bubble squeeze.  This helps get all the glass at the same temperature by the time the bubble squeeze is approached. Glass is a good insulator, and also a poor conductor of heat. This slower advance allows the bottom layer to be at the same temperature as the top piece.

For a four-layer piece, a rate of about 100°C would be suitable.  When the lower point of the bubble squeeze is reached (about 50C below the upper soak), the slow rate of advance can be used to go to the upper end of the squeeze, using the normal soak length.  

This illustrates that the more layers of glass in the stack, the slower the rate of rise must be in the bubble squeeze range.

Five Layers and Beyond
For pieces made up of more than four layers, a different strategy is needed to ensure the heat reaches the bottom layer of glass.  Graham Stone* calls this the “catch-up” schedule. It is essentially an overnight schedule with temperature equalisation soaks of 20 minutes at 125°C intervals all the way to the bubble squeeze. At each stage the rate is increased by 10°C.

This means that with a first segment rise of 20°C per hour, the second from 125°C to 250°C is at 30°C with a 20 minute soak, then 40°C to 375°C soak for 20 minutes, 50°C to 500°C and soak for 20 minutes, and finally 60°C to 625 for a final 20 minutes with 70°C to your normal bubble squeeze temperature.  This will take about 17 hours before you go on to the forming temperature.

This long heat up schedule illustrates the problem of getting the heat to the bottom layers of the stack, and the need to squeeze the air from between the layers.

Thicker pieces apply more weight to press out bubbles from lower layers, but only if the lower layers are equally as hot as the top.  This requires long schedules.

An alternative approach to this bubble squeeze problem is to fuse two layer pieces of the appropriate number to achieve the thickness required.  If these are fired with good bubble squeezes there will be a minimum of bubbles.  Combining these 6mm blanks will give fewer bubbles with a proper bubble squeeze.


Another approach is to start with 6mm glass as it comes from the maker.  This is not always possible, because it is not common for 6mm fusing glass to be made in anything but clear.  It may be possible to incorporate the clear within the stack, if it is not appropriate on the bottom.  These thicker sheets have fewer bubbles proportionally than 2mm or 3mm sheets.  So there are fewer bubbles in the final piece.

Of course, placing shards of glass at the corners, or sprinkling a very thin even layer of powder between multiple sheets will also help reduce bubbles between layers, but it is the slow rate of advance to the bubble squeeze that is the important element.


*Firing Schedules for Glass; the Kiln Companion, by Graham Stone, 2000. ISBN 0-646-39733-8

Further information is available in the ebook: Low Temperature Kiln Forming.