Showing posts with label Aperture drops. Show all posts
Showing posts with label Aperture drops. Show all posts

Wednesday 24 August 2016

Slump Depth - Kiln Forming Myths 30

You can slump only 5cm or so per firing. If so, why don't drop rings fail?

This is really about a comparison of deep slumps and free drops.

Multi-stage Slump
·         The stages of a deep slump give more control of the design
·         The shape of the result is determined by the shape of the mould
·         The wall thickness will be much more consistent
·         For its size the deep slump is lighter than the drop. 
·         The multiple stage deep slump is designed to have the minimum of cold work.

Single Stage Slump
·         If you attempt to do a deep slump all at once you run the risk of ruffle around the upper edge. 
·         There are likely to be a large number of stretch marks on the outside.
·         The design will be distorted to varying degrees along the surface.
·         The wall thickness will vary greatly.
·         You lose the advantages of the multi-stage slump without gaining the advantages of a drop vessel.


Drop Ring Vessels
·         Drop rings require higher temperatures. 
·         The glass thins as it stretches through the ring, so you need to start with a much thicker blank than slumping. 
·         There will be a thick base in relation to the sides.
·         The design will stretch, and if properly designed will be very pleasing.
·         The walls of a drop vessel will vary from thick at the bottom to thin at the top.
·         The collar needs to be cut off the vessel and cold worked to smooth.
·         The process of falling through the ring needs to be monitored to avoid an excessive drop causing distortion or an insufficient drop causing the need for grinding a flat base for the vessel.




Wednesday 23 March 2016

Crash Cooling - Kiln Forming Myths 20

Crash cooling will harm your kiln or break your glass.

Crash or flash cooling was often a requirement in the early days of fusing to avoid devitrification. The kilns used were ceramic ones that did not lose heat very quickly.  The glass also was more subject to devitrification than the glass being made now.  Since those early days, kiln design has advanced so the kilns lose heat more quickly, although still well insulated; and the glass is more resistant to devitrification.  Thus, crash cooling is no longer advised.

If you have a brick lined kiln, crash cooling is hard on the bricks.  The cold air causes rapid shrinking of the brick.  The more rapidly the brick heats and cools, the more fractures will develop in the brick.  This effect will take place over many firings before there is any noticeable damage to the structure of the brick.  However, if you have brick tops or lids, there is the increasing likely development of crumbs of brick falling onto your work.  Brick lids and tops should be vacuumed frequently to remove the crumbs as they form.

Crash or flash cooling from top temperature toward annealing temperature is unlikely to break any glass other than thick glass pieces.  However, when using glass formulated for kiln forming, you do not need to crash cool. The crash cooling may be more useful when using glass that is not formulated for kiln forming.  The purpose in this case would be the same as that for the early fusing – avoiding devitrification by moving as quickly as possible through the devitrification range.

Sometimes flash/crash cooling is required to fix a free drop in place.  If allowed to cool on its own, the glass will continue to move for a while.  If the extent of the drop is critical, crash cooling is required.  This should be to a point below the slumping but above the annealing temperature.  The flash cooling will cool the outer portions of the glass, stopping any further movement. Meanwhile the inner portions are still hot.  This sets up significant stresses.  By stopping the cooling just below the slumping temperature, you allow the internal and external temperatures of the glass to approach one another before going into the anneal soak where the temperature equalises throughout if the differentials are not too great from the flash cooling.

All myths have an element of truth in them otherwise they would not persist.

They also persist because people listen to the “rules” rather than thinking about the principles and applying them.  It is when you understand the principles that you can successfully break the “rules”.

Wednesday 22 July 2015

Thinning a Melt

There are two basic methods, both use gravity, but one uses additional weight.

Gravity
In this you take advantage of the forces of gravity and the fact that heat reduces the viscosity of glass.  The universal belief is that glass tends towards 6-7mm thick. Yes it does, but only under the times and temperatures we give during fusing.  Those who have seen the results of relay stuck on for hours will know that glass will become thinner than that. A kiln stuck at 1200C for several hours will produce glass that is less than 3mm thick, although stuck to the shelf.

The practical approach is to give the glass plenty of heat work by reducing the usual rate from bubble squeeze to top temperature.  Also increase the top temperature, and give the glass time to flow as it moves slowly.

If your melt is 12mm at the centre and 6mm at the edge you need to take that difference into account when setting the initial rate of advance. A rate of about 90C/hour up to the softening point should be slow enough to avoid thermal shock.  You do not need to hurry from there onwards, because the glass needs to be hot throughout to move easily.  A rate of 200C, or less, per hour would be fast enough.  The top temperature should be set around 810C and for at least half an hour, perhaps an hour depending on the diameter of the piece.  Periodic observation is advisable.  When the reflections seem fairly straight from one edge to the other, it is as flat as it will get using this process.

Anneal for a piece of 12mm, even though the piece is no longer that thickness, because the glass has been through a high temperature process and the compatibility of some of the glasses may be a little less than originally.

Note that this process should be done on a kiln washed shelf.  Thinfire or papyrus will get caught up in the moving glass.  The coarser fibre papers will inhibit the flow of the glass.  You need to expect to do considerable cleaning of the glass afterwards.

Pressing
The other method is to use weight above the glass to thin it more quickly and certainly to the desired thickness.  Place a kiln washed shelf with the kiln wash facing toward the glass.  The weight of the shelf above presses the glass outwards more evenly than a free flow will.

Put solid spacers of the thickness you want the glass to become.  Remember that ceramic fibre used as spacers will thin when the binder has burned away. So, a 6mm stack of ceramic fibre paper will be less than that at the end of the firing.  The larger the pieces of fibre paper you can use, the less the effect will be, as the weight of the shelf will be distributed over a wider area. 

The same kind of firing schedule can be used on the way up as in the gravity only method, but you need to approach the annealing differently.  With two shelves and the glass between, you should be thinking of annealing for something in the region of 25mm. 


Do not do this pressing on top of your normal shelf, as the temperature differential between the exposed shelf and the part of the shelf covered with 12mm of glass and 15mm of shelf will be pretty large, leading to thermal shocking of the shelf. 

Wednesday 15 April 2015

Dams for Melts

There are a number of commercial moulds, dams and rings to contain pot and screen melts.

You can, of course, make your own. A simple one is to use 10 or 15 mm fibre board to contain your pot or screen melts. Cut the size and shape of hole you want into the board and that will contain the glass.



You can place this directly onto the kiln washed shelf. No fibre paper is absolutely required unless you want to. You can weight the board by placing the supports for the screen or post directly onto the board.




If you want to use the board more than once, you need to harden it with colloidal silica and fire it. Then you always need to put a separator on it at each firing to ensure it does not stick to the glass melt.


This process allows you to make custom shapes and sizes without great expense. With a bit of ingenuity, you can provide your own textured bottom to the melt.



Wednesday 11 March 2015

Flow Melts without Metal



“Flows” seem to be popular just now.  These are variations either on aperture drops using multiple holes or on screen melts depending on the number of apertures.  This is not a complete tutorial, just some notes on how to prepare a more sound and so more lasting project.  It is not complete, as these flows are essentially incomplete screen melts or aperture drops.  The techniques and methods that apply to them apply to melts also.


It is inevitable that steel of a thickness that can support the weight of inch thick glass when encased will break the glass sooner or later.  Why take the risk of incorporating a material which is not of a size or nature suitable for inclusion in glass?

Instead, one alternative is to use fibre board.  Take a piece of 10mm board (or thicker if desired) and cut holes on a grid pattern.  This is done so that the whole board can be supported on steel rods for safety.  If you are using thicker board, you can insert the steel rods into the fibre board, so ensuring they cannot come into contact with the glass, but still support the whole structure.  I have done 300mm square fibre board drops without support, although the top surface is significantly bowed at the conclusion.  Because you have quite a bit of weight on the supporting board, I would include at least a couple of 3mm stainless steel rods (kiln washed)  at 1/3 and 2/3 distance across the piece, so plan your holes with that in mind.


Another alternative is to kiln wash - or coat in bead release - stainless steel rods of 3 or 4mm diameter and make the grid from them.  This grid can be supported on a rectangular frame of dams or a drop out mould.  As you are going to relatively high temperatures, bead release may work best in this situation. Lay the glass on top of the rods.

Fire your glass with the appropriate rates.  Remember in annealing that you are dealing with a piece that has pretty large differences in thickness.  You therefore need to lengthen the annealing soak, and slow the annealing cool.

Once the piece is cool, you can take it out and put it upside down.  Slide the steel rods out and gently remove the fibre board from between the “legs” of the piece.  If you have used a grid of steel rods, they can removed from the glass, by gently pulling as you twist the rods.  You may have to soak the rods in water to help soften the bead release.

Now you have a flow with no inclusions and much more likely to last. 


Wednesday 17 September 2014

Screens for Melts




You can buy various stainless steel screens such as barbecue grids for supporting glass melts. The grids need to be of stainless steel. Type 304 is the most common, but there are other grades which work at high temperatures too [link to stainless steels]

You can make your own grid as Cynthia Morgan does. This provides a more flexible arrangement for various effects. 

Instead of imbedding the rods into the brick, you could also place them on top. Place a kiln brick or other kiln furniture on the ends of the rods to secure the metal from moving. Then you can put the glass on top of the rods without them shifting as the glass is placed.



Wednesday 10 September 2014

Stainless Steel for Kiln Uses


The reason for using stainless steel is that it differs from carbon steel by the amount of chromium present and reduces the spalling. Unprotected carbon steel rusts readily when exposed to air and moisture. This iron oxide film (the rust) is active and accelerates corrosion by forming more iron oxide, and due to the greater volume of the iron oxide this tends to flake and fall away (spall).


Stainless steels contain sufficient chromium to form a passive film of chromium oxide, which prevents further surface corrosion by blocking oxygen diffusion to the steel surface and blocks corrosion from spreading into the metal's internal structure, and due to the similar size of the steel and oxide ions they bond very strongly and remain attached to the surface.


There are a number of grades of stainless steel. Some of the ones that perform better in hot conditions are:

300 Series—austenitic chromium-nickel alloys. Austenitic steels have a cubic crystal structure. Austenite steels make up over 70% of total stainless steel production. They contain a maximum of 0.15% carbon, a minimum of 16% chromium and sufficient nickel and/or manganese to retain an austenitic structure at all temperatures from the extremely cold to the melting point of the alloy.

Type 304—the most common grade; the classic 18/8 (18% chromium, 8% nickel) stainless steel. Outside of the US it is commonly known as "A2 stainless steel", in accordance with ISO 3506 (not to be confused with A2 tool steel).

Type 304L—same as the 304 grade but lower carbon content to increase weldability. Is slightly weaker than 304.

Type 304LN—same as 304L, but also nitrogen is added to obtain a much higher yield and tensile strength than 304L.

Type 309—better temperature resistance than 304, also sometimes used as filler metal when welding dissimilar steels, along with inconel.

Type 316—the second most common grade (after 304); for food and surgical uses; alloy addition of molybdenum prevents specific forms of corrosion. It is also known as marine grade stainless steel due to its increased resistance to chloride corrosion compared to type 304.

Type 316L—is an extra low carbon grade of 316, generally used in stainless steel watches and marine applications, as well exclusively in the fabrication of reactor pressure vessels for boiling water reactors, due to its high resistance to corrosion. Also referred to as "A4" in accordance with ISO 3506.

Type 316Ti—variant of type 316 that includes titanium for heat resistance. It is used in flexible chimney liners.

Type 321—similar to 304 but lower risk of weld decay due to addition of titanium.

400 Series—ferritic and martensitic chromium alloys

Type 439—ferritic grade, used for catalytic converter exhaust sections. Increased chromium for improved high temperature corrosion/oxidation resistance.

Type 446—For elevated temperature service


500 Series—heat-resisting chromium alloys


Based on Wikipedia 

Wednesday 13 August 2014

Black Specks in Mesh Melts


The first time you use a mesh for a melt, it doesn't spall until it cools. By that time, the glass has hardened enough that any black specks of metallic oxidisation just land on the top of the melt and can be brushed away.

But, once a mesh has been fired previously, it can spall and drop little bits at any time during the firing process, so some of the bits get embedded in the glass.

The only way I have found to prevent this is to sandblast the mesh between firings to remove any loose flakes of metal. This is time consuming enough that you may wish to use a new piece of mesh for each melt. The alternative is to ensure you are using stainless steel as the grid.

There are several options for grids.

Sunday 15 December 2013

Pot Melts – Weight of Glass Required

Circular pieces
This table assumes that a 150 mm diameter pot is being used, and assumes that 125 grams of glass will be left in the pot. Larger diameter pots or even pot trays can be used, but more glass will remain in the container. The following table gives the desired diameter of the melt and the weight of glass needed to achieve an average 6 mm thick result. To achieve a uniform six millimetre thick disk will require long soaks at both melting and fusing temperatures to allow the glass to even out in thickness.

50 mm diameter disk requires 154 grams of glass
100 mm diameter disk requires 243 grams of glass
150 mm diameter disk requires 390 grams of glass
200 mm diameter disk requires 596 grams of glass
250 mm diameter disk requires 861 grams of glass
300 mm diameter disk requires 1185 grams of glass
350 mm diameter disk requires 1568 grams of glass
400 mm diameter disk requires 2015 grams of glass

Thicker melts
Of course if you want a thicker pot melt — one that is confined so that it cannot grow larger, only thicker — you can use the following method to estimate the amount of glass required.

Choose the diameter wanted from the above table, and subtract 125 from the weight of glass required. Then multiply by thickness wanted divided by 6 mm. Add back 125 gms — the amount that will be retained in the pot — and you have the required amount.

For example: a 200 mm disk of 6 mm requires 596 gms. You want a 12 mm thick disk of 200 mm.
First subtract 125 from 596 to get 471 gms. 417 gms times 12 equals 5652. Divide this by 6 mm and you have 942 gms required. Add 125 gms — the amount left in the pot — and you have a requirement of 1067 gms for a 12 mm thick disk of 200 mm.


Rectangular pieces
These are easier to calculate than discs, as the calculation is length times height times depth (all measurements in centimetres).  

If you are making a billet and using an empty margarine pot of 7 cm wide, 12 cm long and 7 cm high you will need enough glass to fill a volume of 588 cubic centimetres.  As the specific gravity of glass is 2.5, you multiply the cubic centimetres to give the weight required in grams — in this case, 1470 gms.

If you wanted a 6 mm tile of 100 mm square you would need 150 grams of glass.

To make a 1 cm slab of the same size you need 250 grams of glass.

To make a billet of 5 cm by 10 cm square you need 1250 grams of glass (this is pretty close the the maximum that can be loaded in a 12 cm diameter Pot).

To make a small sample billet of 2 cm thick by 4 cm by 8 cm you need 160 grams of glass.

A billet or pattern bar of 5 cm by 10 cm by 5 cm needs 625 grams of glass.

Wednesday 23 October 2013

Shape of Aperture Drops


The shape of an aperture drop can be controlled by the speed of the slump. The speed at which the glass drops is a combination of heat and size of the hole. Patience is required.

Rapid drops result from high temperatures. Rapid slumps cause a thinning of the glass at the shoulder where the glass turns over the inner rim of the aperture. The pattern is distorted and the colours are also diluted. And a relatively large rim is left around the fired piece.

A much slower rate of drop spreads the strain of the slump over the whole of the unsupported area of glass. This tends toward a bowl with a gentle slope toward the bottom, reduced distortion of the pattern, maintenance of the colour densities, and a more even wall thickness all over the piece.

The slumping temperature for a shallow angled slump is less than that used for normal slumps, and takes a lot longer – up to five hours typically. This means that observation is required at intervals, say every half hour.

A starting point for the slumping is around 100ºC above the annealing temperature for the glass. So for Bullseye and System 96 the temperature is about 615ºC. If after the first half hour, there is no movement, increase the temperature by 10ºC. Check again in another half hour and if the slump has begun, leave the temperature at that level and observe at the half hourly intervals until the desired slump is achieved. Otherwise, increase the temperature by another 10ºC with the check after half an hour, and repeat until the slump has begun. After you have done the first one of these with a particular size of aperture, you will know the temperature to start the slump.

The temperature you need to use is affected by the size of the hole. The smaller the aperture, the higher the temperature will be needed. But be patient. If the temperature is increased too much, you will get the thinning of the sides that you are trying to avoid.

Additional information on aperture drops can be found in this series.

Tuesday 23 April 2013

Aperture Drops Blank Sizes

As the glass drops through the aperture, it stretches, but the whole substance of the piece is drawn toward the hole. If there is not enough spare glass around the hole, the whole piece will be drawn through the aperture.

There is a minimum size of the glass in relation to the size of the drop out hole. Up to some maximum size, the greater the diameter of the hole the 
greater the amount of spare glass there needs to be.

Also relevant is the depth of the drop. A shallow drop needs only a few centimetres larger than the hole. While a deeper drop needs a greater amount of glass surrounding the hole.

I have found that for a 300mm diameter hole, with a 150mm drop the glass needs to be 35mm larger all around. Thus an aperture of 300mm needs to be at least of 370mm diameter for this 150mm drop. I have done drops with 550mm diameters with only a 650mm diameter blank. This indicates to me that there is an amount of spare glass that will be sufficient even for larger diameter drops, but I have not found it yet. For a large drop with an aperture of 500mm and a depth of 350mm, I used a 100mm margin.  This gave a disc of 700mm.  It successfully dropped with the rim moving only about 20mm.

One element that can reduce the size of the blank is to make an inclined collar around the aperture of the drop mould.  

This idea is based on the observation that as the glass begins to fall through the aperture, the outer edges of the glass rise from the mould surface so the glass is resting only on the inner edge of the drop out mould. 

This inclined drop out mould will be like a shallow bowl rim, but without a bottom. The glass blank then rests with only its outer edge on the collar.  When the temperature increases to the point that the glass begins to slump, the glass will conform to the slope and so create enough friction to restrict the glass from falling through the aperture, although it is with a smaller than normal rim.  The actual size of the rim for each size and depth will need to be determined by experience. 


Wednesday 10 October 2012

Mesh Melt Grids


You can construct your own grid rather than relying on the barbecue manufacturers to use high grade stainless steel.

You can buy stainless steel rod and cut it to the lengths you need for your kiln or project. Push them into soft fire brick at each end. Do the same with another pair of fire bricks and put one pair at right angles to the other.

In this way you can vary the intervals to suit yourself for different projects.

You could also put the rods on strips of mullite and weight the ends so the rod does not roll about while assembling them or when firing.

Alternatively, you can buy the grids available for various purposes. Not all are high grade stainless steel, but normally the spalling happens at a temperature that is low enough to avoid incorporation with the glass.

Sunday 12 September 2010

Lining Dams

Dams should normally be lined with Thinfire and fibre paper to get the best release. If you are using fibre board that has not been hardened, you do not have to line, but you will get smoother edges if you do.

As described by Helios


The lining papers should be about 3mm shorter than the expected final thickness of the finished panel. I find that 3mm paper against the dam provides the required standoff between the dam material and the glass. The lining of the fibre paper with Thinfire provides a smoother surface than just the fibre paper. Both of these liners should be the same height – 3mm less than the final height of the finished piece.

To calculate the expected final height you need to do a few calculations in the metric system.  Weigh the glass in grams.  Divide by specific gravity (2.5) to get the number of cubic centimeters.  Divide the cc by the area enclosed by the dams in square centimeters. This will give the fraction or multiple of centimeters thick the glass is predicted to be.  

Example:
The weight of glass = 500 gms
The specific gravity = 2.5
The area is 10cm by 10 cm = 100 square cm.

Divide 500gms (the weight) by 2.5 (the specific gravity) = 200 cubic centimeters.  Divide 200 (the volume in cc) by 100 (the area) = 2 cm thick final piece for the amount of glass put into the pot.

This indicates the fibre paper should be 1.7cm high to allow enough space for the bullnose edge to form.


Tuesday 6 April 2010

Aperture Pours

The most commonly used aperture pours are Pot melts and wire melts. Pot melts use containers, and wire mesh for wire melts. In both cases they control the way the glass melts into a container or directly on the shelf below.

Emptied pot melt

The materials are stainless steel wire grids, and unglazed terracotta pots. The spacing of the steel grid will determine the number of trails of glass falling. So a finer grid will give more points of expansion in the resulting melt. But will mix the colours much more thoroughly than a coarser mesh will.

Finished screen melt


Doing a pot melt usually provides a simpler pattern of flow. A single round hole gives one circular point from which the glass expands. A single rectangular hole gives a single ribbon shape as the expansion point. You can, of course, have multiple holes in the bottom of the pot to provide a more complex interaction of the flowing glass. The wider the rim of the pot in relation to its depth, the more flexible it will be. You can put more glass in the pot and you can have it higher in the kiln.

The arrangement of glass in the pot will produce different results. There are two basic arrangements: colours layered one above each other as in a layer cake; and colours arranged on end around the sides of the pot. When loading the pot you need to remember that although the glass immediately above the hole will be the first to come out – and therefore be at the edge of the melt – the remainder of the glass comes out in a funnel-like order, with the glass at the bottom corner of the pot being the last to flow out – and become the centre of the melt.

There is a relationship between the hole size and distance to surface that affects the final appearance. The larger the hole the less likely the glass is to spiral as it falls, so you need a greater distance between the bottom of the pot and the shelf. The smaller the hole, the less distance you need. Only experience will tell you what distance and size you need or can use.

You can calculate the amount of glass for different sizes by using this table. If you have a rectangular space you are dropping into, you can calculate the volume of glass by multiplying the width, length and desired thickness – all in centimetres. This will give the volume in cubic centimetres and to convert that into weight, you multiply the volume by the specific gravity of glass - 2.5 is near enough – to get the number of grams of glass required. To convert into kilograms, divide by 1000.

By dropping directly onto kiln washed shelf, ring or circular container you will get some contamination.  There are some ways to avoid this given here.

You can also use this method to act as a crucible to pour glass into closed moulds.