Wednesday 18 December 2019

Annealing Range for Unknown Glass

It is possible to anneal unknown glass with some degree of certainty by using what is known as the slump point test.  This will not be as accurate as a factory determined test, so you do have to extend the range over which you do the annealing.  

The annealing of glass with unknown characteristics is possible in two ways - shotgun and calculated.  The examples here are for 6mm thick glass.  The soak and cooling times need to be extended for thicker glass.  


Both the shotgun and calculated approaches exemplified here assume glass of 6mm thickness.  For thicker glass the soak time needs to be extended and the anneal cool rate slowed more than indicated above.  Using the Bullseye chart for annealing thick slabs will give you an indication of the relationship of thickness to speed.


1)  One is the traditional shotgun approach – pick an arbitrary, but slightly high temperature, and soak for a minimal amount of time there. Then go very slowly through the next 55°C.  This may be as slow as 25°C per hour, followed by a doubling of that rate for the next 55°C. Then double again to 300°C or less.

2)  By using the slump point test and the calculations, you will be sure of the annealing point/temperature equalisation point within 10°C.  The approach here would be to soak for half an hour at the calculated temperature, followed by a slow drop of 50°C per hour to 55°C below annealing soak and then at 100°C/hr to 110°C below your chosen temperature equalisation point. The final cooling could be at 200°C to room temperature.

2a) An additional tweak to the slump point test calculations is to use the Bullseye concept behind their recommendations for thick slabs.  Using their concept, you reduce the calculated annealing point by 30°C from the calculated annealing point to do the temperature equalisation soak at the lower end of the annealing range.  Having calculated the annealing point, you reduce that temperature by 30°C and soak for  a longer time of 60 minutes and at a slower rate as noted in the chart.

In using the chart for unknown glass you substitute the calculated temperatures, but continue to use the rates and times indicated.  An example:

  • You have calculated that the annealing point is approximately 535°C.
  • Subtract 30°C from that to get a equalisation temperature of 505°C.
  • Assume the piece is uniformly 12mm thick or 6mm tack fused (when you want to use rates for  twice the actual thickness to account for the difficulties in tack fusing). 
  • For a 12mm thick piece your soak time at 505°C will be two hours.
  • The cooling rate for the first 55°C is given as 55°C per hour according to the chart. Therefore the first cooling segment will be 55°C from 505°C to 450°C.  The second will be 99°C per hour from 450°C to 395°C.  The third rate will be 330°C per hour from 395°C to room temperature.


You can see that the times and rates are taken as given by the chart (as determined by the thickness of your piece), but the temperature set points are determined by the calculations for the glass you have tested.

When determining what temperature you should use to anneal a glass about which you are uncertain of its characteristics, you can use one of two basic approaches.  Pick an arbitrary temperature and soak for some time there and then proceed slowly in 55°C segments to about 370°C.  A second more certain method is to use the slump point test to determine the annealing point and then apply the Bullseye chart for thick slabs for the soak times and cooling rates.

Further information is available in the ebook Low Temperature Kiln Forming.

Sunday 15 December 2019

Heat Work

“Heat work” is a term applied to help understand how the glass reacts to various ways of applying of heat to the glass. In its simple form, it is the amount of heat the glass has absorbed during the kiln forming heat up process.

There is an relationship between how heat is applied and the temperature required to achieve the wanted result.  Heat can be put into the glass quickly, but to achieve the desired result, it will need a relatively higher temperature. If you put the heat into the glass more slowly, it will require a relatively lower temperature.


For example, you may be able to achieve your desired result at 814C with a 400C/hr rise and 10min soak. But you may also be able to achieve the same result by using 790C with a 250C/hr rise and 10min soak. The same amount of heat has gone into the glass, as evidenced by the same result, but with different kinds of schedules. This can be important with thick glass, or with slumps where you want the minimum of mould marks. Of course, you can also achieve the same results with the fast rise with a longer soak at the lower temperature, e.g. a 400C/hr to 790C with a 30 min soak.


In short, this means that heat work is a combination of time and temperature.  The same effect can be achieved in two ways: 
- fast rates of advance and high temperatures
- slow rates of advance and low temperatures.

You obtain greater control over the processes when firing at slower rates with lower temperatures.  There is less marking of the back of the piece.  There is less sticking of the separators to the back and so less cleanup.  There is less needling with the lower temperature.  

The adage “slow and low” comes from this concept of heat work. The best results come from lower temperature processing, rather than fast processing of the kiln forming.

Wednesday 11 December 2019

Use of Sal Ammoniac block


A block of sal ammoniac is an excellent aid to keeping your soldering iron tip (or bit) clean and able to hold a small blob of solder.

A description of what sal ammoniac is and the safety precautions in its use are here

You should place the block in such a way that it cannot slide around as you rub your iron over it.

Place your hot soldering iron tip on the block until it begins to smoke. Then move your iron slowly back and forth along the block.  Initially, the block will be black from the contaminants coming from the soldering iron bit.  As you rub the bit along the block, it will begin to clear. As it does, you can add a touch of solder and turn the bit over to check whether there are still any black spots on the face of the bit. 

If there are still black spots, return to rubbing on the block for a time.  If these spots are persistent, you can use a brass wire brush to help clean the contaminants off.  Then add a touch of solder and return to rubbing along the block.  Repeat this check until the whole bit is bright and holding a small blob of solder.

Repeat this process for the other side too.

Leave a small blob of solder on each side of the bit to protect the bit from oxidising.  This cleaning process should be done at the end of each soldering session if the bit is not clean.  But it does not substitute for the frequent wiping of the bit on a damp sponge to clean the bit as you work.  The sal ammoniac block is for cleaning persistent contaminants off the bit.

Wednesday 4 December 2019

Pot Melt Temperature Effects

When firing a pot melt, you have to consider how high a temperature you wish to use.

Viscosity is reduced with higher temperatures so increasing the flow and reducing the length of soak, although there are often some undesirable opacifying effects.

The size of the hole is also relevant to the temp chosen. The smaller the hole, the higher the temperature will have to be to empty the pot in the same amount of time. Of course, you can just soak for longer at a lower temperature to achieve the desired object of emptying of the pot without changing the temperature.

Using the same principle, the larger the hole the lower the temperature required to empty the pot in a given amount of time.

The temperature used to empty the pot will need to be between 840C and 925C. The problem with temperatures in the 900C to 925C range is that the hot colours tend to change, e.g., red opal tends to turn dark and sometimes become brown. Some transparent glasses also opacify. There is also the possibility that some of the glasses will change their compatibility.

So the best results seem to come from temperatures in the 840 to 850C range with longer soaks than would be required at 925C - possibly 4 or more hours.

Also remember to give melts a longer than usual anneal as they will be thicker than 6mm at the centre - somtimes as much as twice the edge thickness.

Soldering old lead


This is normally only a requirement when repairing old windows. Usually either to join new lead to the old, or to repair breaks at the original solder joint.



You will need to clean the lead down to the bright metal at the joints. This is more than a rub with steel wool. You need a glazing nail to scratch through the oxidisation layer, the corner of your lead knife, or in cases of mild oxidisation, a brass wire brush might do. But not a steel one as that may scratch the glass and any painting.  

Do not clean the oxidisation off the lead elsewhere. That is a protective layer already formed which leads to the longevity of the came. It is best to leave oxidised lead alone rather than expose the metal to further oxidisation.

Getting to the bright metal where you want to solder the joint means the flux can act appropriately and help the solder form a secure joint.  Otherwise only a weak, cold joint is possible.

Note that you always need to use dust masks or other breathing protection.  You need to have the work area well ventilated and need to do a damp wipe down of surfaces to reduce the amount of lead oxide in the work space.

Wednesday 27 November 2019

Using Cut Running Pliers Without Cushions


Using Cut Running Pliers Without Cushions

There are a wide variety of cut running pliers for different purposes.  A description of some of them is here.


This post is to describe maintenance and use of this kind of cut runner.




The plastic covers that come with these cut runners eventually wear out.  The replacements are hard to find. There are things you can do other than buying a new pair just for the shields.

You can dip the jaws in tool coating compounds such as Plastidip.  This does not last as long as the plastic, but is easy to re-do.

You can wrap the jaws in tape.  Electrical tape, duct tape or even self-adhesive elastic bandage will do the job. Again, not long lasting, but easy to replace.

Or

You can use the cut running pliers without any covering on the jaws.  “You can’t do that. You will crush the glass!” is the response I hear.  You can use them bare. I do, and so can you.


The key is in the adjusting screw.  It is there not just to tell you which is the top of the pliers; it has a function too.  That screw adjusts the opening of the jaws to the thickness of the glass. 


A simple way to ensure you have the correct opening is to put one corner of the jaw on the edge of the glass with the jaw opening less than the glass is thick. Then tighten the screw until you feel the handles of the pliers begin to open.  Then you have the right opening for the thickness of the glass. 


It ensures you cannot crush the glass, as the jaws will not close at the centre to be less than the glass thickness. 

You also have a more direct feel of the glass without the spongy connection of the plastic. You can sense the glass beginning to bend just before the score runs due to the gentle pressure of the jaws of the cut runners on either side of the score.

Whether you use the cut runners with or without cushions on the jaws, it is important to keep the adjustment screw lubricated so you can adjust the width of the jaw opening for different thicknesses of glass.



Wednesday 20 November 2019

Pot Melt Schedule

I usually use a schedule like this for either S96 or Bullseye:

100C/hr to 220C for 20 minutes; this is approximately the crystobalite inversion temperature – to be kind to the pot.

220C/hr to 570C for 20 minutes; this is approximately the quartz inversion temperature – again to be kind to the pot.

220C/hr to 677 for 30 minutes; this is a bubble squeeze temperature to allow larger bubbles to escape from the pot before melting begins.

330C/hr to 850C for 120 minutes; this is to ensure there is plenty of time to empty pot.

AFAP to 805C for 30 minutes; this is to allow thickness equalization and also to allow bubbles to pop and seal.

AFAP to 482 for 90 minutes; this is for Bullseye, but is applicable to other glasses too.

55C/hr to 427C no soak (for 6 to 8mm thickness)

99C/hr to 370C no soak.

120C/hr to 150 end.

Allow to cool to room temperature 

Pot Melt Contamination

Pot melting occurs at temperatures above that for which kiln washes are designed. This means the kiln wash most often sticks to the back of the melt.

If you put only fiber paper – Thinfire, Papyros, or standard 1mm or 2mm fibre paper – at the bottom, the dripping glass will tear and move it about.  It also tends to incorporate fibers from the refractory papers into the melt.  It is best to avoid fibre papers of any kind on the base.  Using fibre paper around the edges of dams, if you use them, is better than simple kiln washing of the dams.

From wikihow


If you have a sandblaster, it is easy to take the kiln wash off leaving a matt surface. You can live with this for many purposes, but if you want a more polished surface you can take the melt up to fire polishing temperature to shine up the surface. You will need to flip this over and fire again, if the original top surface is what you want to present.  Or if you like the new shiny surface, use it as is.

If you are going to cut the pot melt up for other uses, there is no need to fire polish as the surface does not matter, only the cleanliness, and removal of contaminants.



There is another thing you can do to avoid kiln wash contamination.


The best solution appears to be to put a disk or rectangle of glass on top of fibre paper. It can be clear or any colour you wish, but needs to fill the area enclosed by the dams. This seems to keep the fiber paper from tearing and being incorporated into the glass, even though the base will have the fibre paper marks.


It also works very well when you are confining the melt to get a thicker disk. Make sure you have kiln washed the sides of the container or dam very well, in addition to 3mm fibre paper arranged so that it is 3mm narrower than the expected final thickness, or any excess glass may stick to the dams. The means of arranging the fibre paper around the dams is given here. You may need to grind the marks off the edge of the disk, but this is much easier than grinding it off the bottom.

Soldering Iron Maintenance



“How do I maintain my soldering iron?  I see so many different methods online that I find it confusing.”

Regular cleaning

There at least two reasons for regular cleaning of the solder bit.

The first is to avoid the build-up of carbon and other contaminants which impedes the transfer of heat from the soldering bit to the solder and surfaces to be joined.


Many soldering stations come with a sponge which, when wet, is used to quickly swipe the iron's tip clean. A small amount of fresh solder is usually then applied to the clean tip in a process called tinning.



The second is to maintain the soldering bit in good condition.

The copper that forms the heat-conducting bulk of the soldering iron's tip will dissolve into the molten solder, slowly eroding the tip if it is not properly cleaned. As a result of this, most soldering iron tips are plated to resist wearing down under use. To avoid damaging the plating, abrasives such as sand paper or wire brushes should not be used to clean them. Tips without this plating or where the plating has been broken-through may need to be periodically sanded or filed to keep them smooth.


To avoid using abrasives, cleaning with sal ammoniac is recommended. This comes in a block. You rub the hot soldering iron bit on the surface. As the surface becomes hot, it begins the cleaning process, noted by the smoke rising from the block. When the block under the bit becomes clear, the bit will be clean and can be tinned as above. If this is done at the end of each session of soldering, the bit will last longer and will be ready for soldering immediately when you next need to use it.


Turn off the Iron

The most important element in the deterioration of soldering iron bits is long idle times. This is where you leave the iron on, and not in use, for a long time.

Have everything ready when you start soldering, so the iron will be used continuously, and will not sit there building up heat, while you get ready to use it again. An idle iron will keep heating to its maximum capacity and, without anything to transfer the heat to, it will start burning off the tinning after a short while. If you will not be using the iron for a while turn it off until you are ready again.


Tinning


If a bit has not been properly tinned, solder will not wet to it. Without solder on the bit heat transfer from the bit to the work surface may become extremely difficult and time consuming, or even impossible.

You will understand that proper wiping and continuous wetting is important and a lot easier than continually having to clean and re-tin the bit, especially at the risk of damage to the plated surface because of accidentally scratching, or over abrading it.

When you notice that an iron is not performing as well as it did when it was new you will find that poor thermal transfer from the element to the work is usually the cause. Improper care and maintenance and the lack of a periodic cleaning of the bit can cause a layer of oxides to form, which will inhibit the transfer of heat through the bit.

These factors are reasons why keeping a film of solder on the bit (tinning) is important in maintaining the long life of the soldering bit.



Cleaning the whole Bit.

Each soldering bit has a shank which fits into a heating collar of one kind or another.  The bit should be removed at periodic intervals and the build-up of oxides should be cleaned from the shank.  The oxides inhibit the transfer of heat from the elements to the soldering bit.  This cleaning work, of course should be done when the iron is cool.  You can use fine abrasives on the shank to remove the oxides.  You can also make a tube of fine sand paper to clean the inside of the heating collar.  This should not be done on ceramic heated soldering irons such as the Hakko.


Wattage

Another element in the maintenance of soldering irons is to have an iron of high enough wattage to readily melt the solder and be able to reheat fast enough to maintain the necessary melting temperature. An iron with enough power will reduce the strain on the heating element of the iron and the strain on the user while waiting for the iron to catch up.

For example, an 80-watt iron is sufficient to solder with, but it will continue to get hotter, as it has no temperature control until it becomes too hot for stained glass soldering, often causing breaks in the glass. An iron of this type is often used with a rheostat in order to prevent overheating while it is idling. However, this reduces the power to the iron and so increases the time needed to recover sufficient heat to continue soldering.  Also, a rheostat only slows the heat up, it does not limit it, so eventually the iron will still become too hot if left to idle.

Most temperature-controlled irons seem to be produced in 100 watts or higher. These irons attempt to maintain a constant temperature. Their ability to do so depends on the wattage and the amount of heat drained from the bit during soldering. The temperature-controlled irons are normally supplied with a 700°F bit (identified by the number 7 stamped on the internal end of the bit) and is sufficient to melt solder without long recovery times. You can obtain bits of different temperature ratings, commonly 800°F and 600°F. The 800°F bit is particularly useful when doing a lot of copper foil soldering, because it recovers to a higher temperature, allowing much more continuous soldering action.

You can also get several sizes of tips for different detail of work.  Upon first sight a fine tip would be useful for fine copper foil work.


But fine tips loose heat quickly, requiring the user to wait while the tip regains the required heat.  A 6mm to 8mm wide bit is useful to maintain the heat during the running of a long bead.  Of course, the bit is wider than the bead being run, but the solder has enough surface tension, while molten, to draw up into a bead the copper foil without spreading – unless too much solder is being applied. Really big bits of 12mm or larger are not practical – long initial heat up times, and too much area is covered, even though there is enough heat stored for really long solder beads.

Wednesday 13 November 2019

Separators sticking to Opalescent glass



It is worth thinking about how fast you fire pieces, especially where your current working temperature and rates of advance are giving difficulties.  One common difficulty is where opalescent glass picks up kiln wash or fibre paper and partially incorporates it, requiring a lot of work to remove it. 


At higher temperatures opalescent glass seems to incorporate some of the separator, especially near the edges.  It does not seem to matter whether kiln wash or fibre papers are used – there is frequently a little pick up.

The difficulty is achieving the profile you want without the higher temperatures.  This is where heat work concepts can assist.  Glass reacts to the heat applied, rather than simply the temperature.  Heat is a combination of time and temperature.  Rapid rates of advance require higher temperatures than slow rates of advance to achieve the same effect.

These facts should make you consider slower rates of advance to achieve the work at a lower temperature and so pick up less of the separators.  Perhaps you could consider a rate of advance of 150°C or 200°C instead of 330°C once you have passed the bubble squeeze temperature.  This would allow you to have a full fuse at ca. 800°C or even a little lower instead of 816°C (for Bullseye).  You will need to observe to find what is the appropriate temperature for the effect you want.  This will apply both with different rates of advance and with different lay-ups.



Wednesday 6 November 2019

Limits to the “Low and Slow” Concept



I frequently advocate using slow rates of advance and low temperatures to achieve the results desired with a minimum of marking in forming, or a minimum of firing difficulties during the fusing part of kilnforming. 

But there are limits to this both in terms of physics and practicality.  There are temperatures below which no amount of slow heat input will affect the brittle nature of the glass, for example.  If your temperature is below the strain point of the glass, virtually no change will occur even with very long soaks.  The graph below shows the slumping range is from the annealing point (glass transition temperature) to about 180C above the annealing temperature.  After that temperature the glass is prone to devitrification (the beginnings of crystallisation). 

This shows the the slumping range of a specialised glass rather than the soda lime glass that kilnformers normally use.


In this graph, the glass has an annealing temperature of about 600C, which is higher than that for float glass and much higher than for kilnforming glasses.  The glass transition temperature range for existing fusing compatible glasses is around 510C (+/- ~10C).  Float glass has a higher annealing point of around 540C (+/- ~ 10C). Following the research behind this graph, stable slumping temperatures would be in the range of about 510C to 690C (+/- 10C).  

It is important to be aware that the annealing point is determined mathematically as the glass transition point.  This is the annealing point at which temperature the glass can be most quickly annealed. The practical research conducted by Bullseye has shown that a temperature equalisation soak in the lower part of the annealing range is a good solution to the the practicality of balancing adequate annealing with the use of the kiln time.  The annealing point temperature and that which you use to equalise the temperature within the glass may be quite different.

Even where it is possible to achieve an effect at a low temperature, it can take too long to be practical.  For example, I can bend float glass at 590°C in 20 minutes into a 1/3 cylinder.  I could also bend it at 550°C (just 10°C above the annealing point), but it would take more than 12 hours. This is not practical.

In addition to practicality, there is the physical limitation.  If you slump below the glass transition point, you will be unable to properly anneal the glass and therefore produce an unstable item.  It will contain stress from this inadequate annealing leading to an increased fragility.

The balance required between the rate of advance and top temperature means that you will need to do your own experiments to find where the practical limits to using heat work are for you. The more patient you are, the lower temperature you can use.


More detailed information is available in the e-book: Low Temperature Kilnforming.

Analysis of Breaks during Fire Polishing




The analysis of breaks in fire polishing can be difficult.  The temperature and heat work are minimal, so the edges can look sharp, which would indicate that the break occurred on the cool down.

But this is where you really need to feel the edges.  If they feel very sharp, then you can be more confident that the break occurred on the cool.  But if there is even the slightest smoothness to the edge as you feel it, the break probably occurred on the heat up to fire polish.



In this picture, there appears to be an annealing break, because of the hooked ends of the break.  That is typical of a break due to inadequate annealing.  It is important to know when the break occurred, so that appropriate remedial action can be taken for future firings of similar pieces.

To determine if the annealing break occurred because the initial anneal was inadequate, it is important to do a touch test. Just looking at it will not be enough.

If the edges were even slightly smoothed, the anneal break occurred on the way up.  This would mean that the anneal of the original blank was not adequate, assuming a reasonable rate of advance was used for the thickness of the piece.

If the edges are razor sharp, the break occurred on the way down, indicating that the anneal after the fire polish was not adequate.  This would mean that in future the annealing needs to be done more carefully on fire polished pieces.

Being too quick to apply a diagnosis of a break during a fire polish can lead to the wrong conclusion, and so the incorrect alteration of future schedules.

Saturday 2 November 2019

Draping over steep moulds

Draping over a narrow or small supporting ridge with large areas of glass is difficult.

One solution might be just to invert the whole piece and let the glass slide down into the mould. However, there rarely is enough height in a glass kiln for deep slumps, especially with a “V” shaped mould. It has to be high enough for the edges of the glass to be supported at its edges. You could also approach this by having a first mould with a shallower angle or broader support at its centre. Drape over this first, then use the steeper mould as the second draping mould. This makes the balance less critical.


The idea of supporting the glass is the key to doing this kind of slump that seems to require an impossible balancing act, if it is to be done in one go. Place kiln washed kiln furniture at the edges of the otherwise unsupported glass. Fire the kiln, but watch until the glass begins to slump. Then reach in with a wet stick and knock the kiln furniture aside to allow the glass to continue its slump and conform to the mould shape.


The lower temperature you use to do the draping and the slower your rate of increase is, the less the glass will be less marked by the mould. Frequent brief visual inspection during the drape is vital.


Also have a look at a suggestion for the kind of firing required for this here.

Schedules for Steep Drapes

I have been asked for a schedule for draping in the context of a tip on steep straight sided drapes.

What you are trying to do with a steep drape is two things. One is to compensate for the heat sink that the glass is supported by, and the second is to compensate for the relative lack of weight at the outer edge of the glass.



The supported glass transmits its heat to the support, leaving it colder than the unsupported glass. This often leads to breakage due to heat shock at much lower temperatures and slower rates of increase than glass supported at its edges. My experience has shown that - contrary to what I recommend for other kinds of firings - a slow rise with short soaks at intervals up to the working temperature works best. The reason for these slow rises and soaks is to try to get the support and the glass to be as nearly as possible at the same temperature throughout the rise in temperature. The soaks help ensure the mould is gaining heat without taking it from the glass.


The other problem with steep drapes is that the edges of the glass begin to drop more quickly than the area between the support and the edge. This leads to the development of an arc that touches the mould side near the bottom before the glass between the edge and the and the support. Extended soak times are required to allow the glass to stretch out and flatten. If this is done at high temperatures, the glass will thin - possibly to the extent of separating.


So the requirements for a firing schedule on this kind of drape are slow increases in temperature with soaks to avoid thermal shock, and an extended soak at the (low) forming temperature.


Whether using steel or ceramic moulds, I use a slow rise in temperature to 100C with a soak of 15 minutes. I then increase the rate of rise by 50% for the next 100C and give a 15 minute soak there. For the next 200C I raise the temperature at twice the original temperature rise, again with a 15 minute soak. The glass and mould should now be at 400C. This is still at the point where the glass could be heat shocked, so I only increase to 2.5 times the original rise rate but use this rate all the way to forming temperature.


Each kiln has its own characteristics, so giving schedules is problematic. 


  •  A side fired kiln will need slower heat rises than a top fired one. 
  • The closer the glass is to the elements, the slower the rate of increase needs to be. 
  • The kind of energy input - electric or gas - has an effect. 
  • The thickness of the glass is also a factor in considering what rate to use. 
  •  The size of the glass in relation to the size of the support is important - the greater the differential, the slower the heat rise should be. 


So in making a suggestion on heat rises, it is only a starting point to think about what you are doing and why you are doing in this way.

I have usually done this kind of draping in top fired electric kilns where the elements are about 250mm above the shelf, and about 120mm apart. In the case of a 6mm thick piece about three times the size of the support area, I use 50C/hr as my starting point. This is one third of my usual rate of temperature rise. However you must watch to see what is happening, so that you can make adjustments. You should observe at each of the soaks, so you know how the glass is behaving. It will also help you to pinpoint the temperature range or rate of advance that may be leading to any breakages.


On steep slumps, the temptation is to use a high temperature to complete the drape. This is a mistake as the glass will be more heavily marked and tends toward excessive stretching and thinning. What you really need is a slow rate of advance to a relatively low temperature. If you normally slump at about 677C, then you want to do this steep, straight sided drape at 630C or less. It will need a long soak - maybe up to an hour. It will also need frequent observation to determine how the drape is progressing. So plan the time to make yourself available during this forming soak.


Annealing is done as normal, since the mould and glass are more closely together and will cool at the same rate.


The original tip on the set up of a steep straight sided slump is here.

Slumping Tack Fused Glass Stringers

After you have tack fused your stringers, you will have a fragile blank, about four stringer layers thick. This will need to be handled gently and watched carefully during slumping.



When you slump, you should fire very slowly. Although thermal shock is not likely, the thin pieces have a tendency to crack when they bend into the mould. A safe firing schedule would be to advance at no more than 150C/hr to 540C, then increase the temperature at about 55C per hour toward 677C. Keep watching until the piece slumps into the mould, then advance to the next segment of the programme and anneal as usual for 6mm thickness.



For your first attempts, it's a good idea to use a shallow mould. After you get a feel for the process, you can achieve deeper slumps.

Further information is available in the ebook: Low Temperature Kiln Forming.

Tack Fusing Glass Stringers

The most time consuming part of tack fusing stringers is laying the stringers out. Most stringer bowls start with around four layers of stringers. The stringers need to be arranged in rows. It is often necessary to use a small amount of glue to keep the stringers in place as they are arranged. Some people glue the stringers directly to a piece of paper (normal or thinfire) to make them easier to arrange.


Making an 450mm square piece will take around six tubes of stringers.



If you want a piece where the individual strands of stringers are visible rather than fully fused, you will need to fire to as low a fusing temperature as possible. The precise temperature will, of course, vary by kiln. Most kilns will achieve tack fusing results in the range from 700C to 730C. Fire as quickly as you would like to around 675C, then increase the temperature very slowly, 50C per hour or less. You need to watch closely as the temperature approaches 700C. When the top layer of stringers begin to sag, start cooling the kiln. Firing too high will lead to a flat piece with no feel of the individual stringers.

Further information is available in the ebook: Low Temperature Kiln Forming.

Temperature Equivalents of Orton Pyrometric Cones

The pyrometric cones used by ceramicists can be very useful for checking the temperatures within your kiln. Bullseye have a test described on their website for discovering the eveness of heat distribution in the kiln. The Orton cones can provide an alternate means of testing. This process will also test the accuracy of the temperature readings of you controller/output.


You need to place the cones on supports all around the kiln. Small cones, wich are most useful for this purpose have their own supports built in. The behaviour of the cones will indicate both the temperature achieved - if you fire them according to instructions - and where the hotter and cooler parts of your kiln are located.


You do need to make visual observations to determine when the cone has matured. So you begin checking about 20C - 15C below the indicated maturing temperature. What you will see is the point of the cone bending down. When the point of the cone is pointing directly down, the maturing temperature has been achieved.



You can now check the temperature that is recorded by your read out. Write that down some where. Switch the kiln off now, if you want to see what temperature differences there are within your kiln. You do not need to do any controlled cooling. When cool enough, you can open the kiln and observe where the temperature has differed, by the extent to which the cones are pointing down. If the cone has completely conformed to the edge of its support, it has been over fired. Those that do not point directly down, have not reached the maturing temperature.


The cone numbers that are useful for kiln forming are 022 - 011. Remember that to achieve the temperatures, the cones must be fired at the indicated rate. Any other firing rates will not give accurate temperatures, as the cones are measuring heat work.

Large Orton Cones fired at the rate of 60C/hr over the last 100C will give the following temperature equivalents:
019: 676
018: 712
017: 736
016: 769
015: 788
014: 807
013: 837
012: 858
011: 873

However if you fire large cones at 150C/hr over the last 100C, you will get the following temperature equivalents:
019: 693
018: 732
017: 761
016: 794
015: 816
014: 836
013: 859
012: 880
011: 892

You of course, get different temperatures for the small cones of the same numbers. The small cones must be fired at 300C/hr over the last 100C.
022: 630
021: 643
020: 666
019: 723
018: 752
017: 784
016: 825
015: 843
014: 870
013: 880
012: 900
011: 915

If you decide to use self supporting cones, the evidence you are looking for is slightly different. In this case, the cone has achieved the heat work when the point is level with the base. If you fire the self supporting cones at 60C/hr for the last 100C you will get the following temperature equivalents:
022: 586
021: 600
020: 626
019: 678
018: 715
017: 738
016: 772
015: 791
014: 807
013: 837
012: 861
011: 875

A wall chart is available from the manufacturer