Showing posts with label Observation. Show all posts
Showing posts with label Observation. Show all posts

Wednesday 27 March 2019

Observation

The importance of Observation (and recording)


Observing what you, or the kiln, is doing whether you are using a cartoon, or a schedule obtained from elsewhere – including the kiln manufacturer – means that you will learn much more quickly as you progress.  You will be able to alter things as you go.  This applies to all stages of the piece from design to removing the piece from the kiln.

The Design

Once you have made your design – whether as a drawing or a mock-up – look at it.  Really look at it.  Look at it from a distance, climb a ladder if you can’t pin it on a wall and look down on it.  Look at it from the sides so you have an oblique angle view.  Turn it upside down to confuse your expectations and so see what is really there.  Look at it, using a mirror to see if it still looks good. Make the alterations you need as you go along to get the look you want and then repeat the process until you are happy.

Assembly

Observe how you have put the piece together.  Do the pieces fit?
Is everything in the right place? Are the colours right? Does it match your vision – symmetrical or asymmetrical?   Do these things as you progress, so you become aware of the process and its rhythm.

Firing

Once you have determined your schedule, you cannot just leave the piece. If you are new to fusing, you need to observe the stages of firings to begin to understand what is happening to the glass at various temperatures and rates of advance. You would not put a cake into the oven and leave it without checking on it from time to time. Why would you fail to observe a much more expensive process?

Even when you are experienced  - observation of new layups, new processes and anything you haven’t done several times before - you need to know how things are progressing during the firing.

Observing a firing is relatively simple.  You need to check on two things:

·   Check for a too rapid rate of advance.  Peek into the kiln at around 540C to see if the piece is still whole.  If not, you can abort the firing and progress to fixing or move on to another project.

·   Check to see when the desired shape has been achieved.  Peeking to see if the slump is complete or needs more time is important to getting the shape right.  Peek to determine if the tack fuse has been achieved.  When it has, advance to the next segment to avoid over firing.  If it hasn’t, add time to the schedule to get it right.

Recording

It is not enough to simply observe.  You need to record what you intended and the results you achieved.  That includes what you did to get things right as well as wrong.  What did you do to correct elements?  These are all things that you will need to refer to in the future.

The key to rapid learning is observation and recording what you see.

Wednesday 6 February 2019

Lamination

Lamination in kiln forming is the adhering the glass pieces together without changing the shape of the glass.  On a laminated piece the edges of the glass will still be sharp but cannot be pulled apart.  Each manufacturer's glass will have slightly different lamination temperatures and it will be affected by the length of soak.

How do I find the lamination temperature?

Observe

Make your chosen layup in clear glass.

Peek at your glass at frequent intervals from 550C.  The rate of advance should be slow, say 150C or less. When it is observed the edges are just  beginning to round, you know you have the high-profile tack temperature for that rate of advance.

On another firing of the same setup and rate of advance, soak at 20C lower than the previous temperature for 60 mins. You need to keep peeking during the soak to ensure the edges remain sharp. 

When you see the edges begin to round, you need to advance to the cool and record the length of the soak used.  You will need to shorten that soak by the interval of your peeking.  If you were peeking every 10 minutes, reduce the length of the actual soak given by 10 minutes for the next firing.

These three firings will give you a schedule for laminating glass together for your chosen layup.  Other layups will require slight variations which will require observation to determine how much change from the original schedule is required.

Anneal and cool carefully

Do not forget to schedule the anneal soak and cool for at least twice longer than for a tack fuse each time.  This may make the soak four or more times longer than for a full fuse.

The reasons for the longer soak and slower cool are:
·         The glass pieces are not incorporated with each other. 
·         The pieces will react to cooling in different ways. 
·         Different colours have different viscosities and different contraction rates.
·         The shading effect of one piece on top of another is intensified. 
    There are right angles between the base and the stack of glass above.
T

All these factors make it important to ensure all the glass is at the same temperature (the anneal soak) and that the pieces, that make up the whole, cool at the same rate even when shaded.

Further information is available in the e-book: Low Temperature Kilnforming.

Wednesday 6 June 2018

Peeking

Observation is desirable for learning and essential for several processes.  How you do that is important to the safety and health of your eyes and skin.  This post gives some guidance on the protections required.

Each observation should take a fraction of a second. It is called peeking to distinguish it from looking or watching. There is a method to doing this. Think about what you are looking for before you open the kiln. Pop open the kiln to record with your eyes, close the kiln. Think about what you saw. If necessary, repeat.  But only after you have thought about what you saw.

Do not spend time looking into the kiln.

Think about the necessity for observation before buying your first or next kiln. 

The best kilns are those with generous observation ports, both in number and size.  These allow you to peek into the kiln without disturbing the heat distribution within the kiln.  Two or more ports are best, as you can shine a light into one of them to illuminate the interior of the kiln at lower slumping temperatures.

If you do not have ports you will need to open the kiln. This is easiest to do with top hat kind of kiln.  The top hat kiln keeps a lot of heat in the upper portion of the lid, making the amount of heat dumped less than on other kinds of opening.  You can peek in at the level of the shelf, so minimising the amount of heat being dumped.

The problems with lids opening so you have to peer down into the body of the kiln, and with doors opening to the front, is that you are dumping a lot of heat directly at yourself.  You also are losing a significant amount of heat from the kiln.  The large air exchange also will disturb any dust in the kiln and that may fall onto your work.

It is possible to make ports in your kiln by drilling a large diameter hole in the side of the kiln and through the insulating material (assuming you do not have side elements).  This post gives some ideas.

In all the cases where it is necessary to open a lid or door, you must close the kiln slowly and gently to minimise disturbance of the air within the kiln.

The effects on the glass of peeking at various temperature ranges varies between the rise and the fall in temperature.  This post 

Wednesday 15 November 2017

Removing Fibre Paper Marks


We all at times take short cuts or economies which lead to less than desirable outcomes.  One of these is to piece together fibre paper.  Often the marks of the join – which are always there – are just too obvious to leave.  The question becomes whether the fibre paper join marks can be eliminated.

Yes, there are at least two ways to remove these marks.  

One is to cold work the bottom with a flat lap or wet belt sander.

The other is to use the kiln to re-fire the piece.

One method would be to put fresh fibre paper or kiln wash on the shelf and fire.  This will require temperatures near the full fuse to achieve enough heat at the bottom of the glass to effect a significant change in the markings.

My suggestion for removing fibre paper marks - while it is still flat - is to fire upside down to fire polish to get rid of the marks without much changing the desired final texture of what will be the top. This is because the underside of the glass will not have the same heat effects as the top side. This also has the advantage that you can observe when the marks are eliminated.

When fired, flip over, clean the piece well to remove any fibre or kiln wash, and take to a quick fire polish to remove any marks - if necessary - caused by the upside-down firing.  This quick fire will be a slow rise to ca. 600°C, and then quickly to the 740°C to 770°C range.  This will cause the minimum change in the surface of the piece.

You will need to observe when both the evidence of the line disappears, and in a subsequent firing, when the final top surface of the piece is fire polished.


Wednesday 18 October 2017

Slumping Glass that is not Tested Compatible

Is it Possible?

It is possible to slump unknown glass. This glass might be art glass, window glass, bottles, or any other glass whose characteristics are unknown by you.  There are some suggestions about the characteristics of some glasses in this post that can be used as a starting point.

Preparation of the Glass

Prepare the edges to their final finish before slumping.  This because the slumping temperature will not be enough to alter the finish of the edge significantly.  This preparation can be done with diamond hand pads, or wet and dry sandpapers.  Start with a relatively coarse grit. You may wish to do the initial shaping on your grinder. This will be between 80 and 100 grit.  Continuing with a 200 grit and working your way through 400 and then 600 grit will give you an edge that will become shiny during the slumping.

Cleaning

Clean thoroughly.  This is especially important when using glass that is not formulated for fusing.  Devitrification is more likely on these glasses.  Water with a drop of dishwashing liquid can be enough unless your water has high mineral content.  Then distilled water or a purpose made glass cleaner such as Bohle or Spartan should be substituted.  Finish with a polish to dry with clean paper towels. More here. 

Firing the Slump

Fire up slowly.  You should advance at about 100°C to 150°C per hour.  Set your top temperature around 630°C for a simple slump, for soda lime stained glass.  For bottle or window glass you will need a temperature closer to 720°C although the also are soda lime glasses.

It is best to start with simple curves, as there are fewer difficulties in determining what the glass is doing.  It will help you to learn the characteristics of the glass before you tackle the difficult stuff, such as compound curves or texture moulds.

Observation

It is necessary to observe the progress of the slump as you do not yet know the slumping temperature.  You want to know when the glass begins to deform so that you do not over fire.  Start watching the glass at about 10 minute intervals from about 580°C for stained glass and 680°C for window and bottle glass.  There is not much light in the kiln at these temperatures, so an external light is useful.  You can also observe the reflections of the elements on the glass.  When the image of the elements begins to curve, you know the glass is beginning to bend.

Altering the Schedule

Soak for at least 30 mins at the temperature when the glass begins to visibly drop. This may or may not be long enough.  Continue checking at 5-10 minute intervals to know when the slump is complete.  If the glass is completely slumped before the soak time is finished, advance to the next segment.  If not fully slumped, you need to extend the soak time. This means that you need to know how to alter your schedule in your controller while firing.  Consult your controller manual to learn how to do these things.

Stop the soak when complete and advance to the anneal. Continue the slumping soak if not complete after the 30 mins.  In some cases, you may need to also increase the temperature by 5-10°C.

Annealing

The annealing point will be about 40°C below the point that the glass visibly starts the slump. If you want a more accurate determination of the annealing point, this post gives information on how to conduct a test to give you both the slump temperature and the annealing point.  It also helps to determine the lower part of the tack fusing range (the lamination state), since it is not far above the slumping point that you will observe.

The annealing soak for a single layer, 3mm glass need not be long – 15 to 30 minutes.  The annealing cool can be as fast as 120°C down to 370°C.  For thicker glass and slumped bottle glass you will need a longer soak – 30 to 60 minutes – and a slower cool.  The annealing cool in this case could be about 60°C/hour to 370°C.  You can turn the kiln off at 370°C, if you wish, or keep the temperature controlled to about 50°C.  The rate for the final cooling can be approximately double the first cooling rate.  For a single layer of stained glass this could be 240°C, and for thicker glass about 120°C


Wednesday 28 December 2016

Making Your Own Schedules

Starting out with your own schedules is a bit frightening as you don’t yet know the capabilities of your kiln and the problems that might occur. This note attempts to give you some pointers on how to go about making your own schedules.

Start with the glass manufacturer’s recommendations.  Picking something from the internet or a discussion list may seem easy, but you cannot assess the quality of the posted schedules.  Many odd practices have crept into the kiln forming community. The manufacturers know their glass, so you should start there. They are the quality control standards for kiln forming.  Modifications will of course be required for your particular practice as it develops.

Enter the manufacturer’s schedule for the project you are working on and then watch while firing.  Watching does not mean staring into the kiln.  This would damage your sight after a while. This watching consists of quick peeks into the kiln to see what is happening.  These peeks will be at above 580C.  It is only then that there is enough light in the kiln to see what is happening.  At first the peeks will be at possibly only 30 minute intervals.  But as you near the target temperature, you will need to peek at possibly 5 minute intervals. The progress of the glass forming will be much quicker, so to know when the right temperature has been achieved, frequent peeks will be needed.

This observation will let you know if the glass is achieving what you want. If it is not, you can change the schedule while firing.  E.g., advancing to the next step in the schedule, extending the soak time, changing the working temperature to a higher point.  Be sure to read your controller manual to ensure you know how to do these changes during the firing.

If you have achieved the look you want before the target temperature has been achieved, advance the schedule to the next segment or ramp.  Record this temperature, as the next time you fire this set up you will want to be 5°C -10°C lower than this time.  You are aiming to achieve your look with a 10 minute soak.  So, depending on temperature, rate of advance and your kin, this lower temperature with a 10 minute soak should achieve your desired look.  Record this schedule. You will need to observe the next firing just to be sure the temperature and time combination you choose works. 

If the desired look has not been achieved by your top temperature and soak, you can raise the temperature 5°C -10°C, even if you have to interrupt the firing to change the temperature.  The controller will recognise which ramp is required to complete the ramp to the new top temperature without going through all the segments of the schedule.  Even if it does not, you can advance to the ramp you need.  The effect of these changes will be minimal in relation to the full and uninterrupted schedule and can be relied upon to work well on future firings.  Record the new schedule for future use.

An alternative to the change of the top temperature, is to extend the soak when the temperature has not achieved the effect.  You will need to keep peeking until the sought for profile is achieved.  Record this new soak time and the results for future firings.

As you can see it is important to record schedules, layup and results every time you fire.  This enables you to compare results and learn.  A log provides a good reference when you want to reproduce something that was successful.  It also records what did not go well and can remind you of what to avoid.


This process of observation, amendment on the fly, and recording actions and results helps you to get to your ideal schedule much quicker than by putting a schedule in and coming back the next day to see what has happened.

Wednesday 21 December 2016

Diurnal Firing Practices


It is most common for people to fire overnight so they can see their piece(s) the next morning.   This is a poor practice for novices.  Not simply a lazy one. It is a practice that leads to use of others’ programs and practices, rather than building on one’s own experience and practice. Others’ programs are used because they were successful for them.  They may not be successful for you. The number of failed projects that are discovered when the kiln is opened, show that it is often not possible to transfer another’s schedule to your project.

The ability to fire while you are absent is a great advantage to kiln forming practices.  The widespread use of the controller has brought many advantages to kiln formers, not least that they can get some sleep and have a social life. They no longer need to be beside their kiln all the time it is firing.  The controller has also made it possible to set the ramp rates and soaks without calculations.  And without having to set periodic alarms to remind us to check the kiln to see if it is advancing at the correct rate.

Before controllers it was necessary to sit beside kiln to watch what was happening and adjust the ramps and soaks to conform to what was planned.  It was also necessary to observe how the glass was behaving and adjust the power input accordingly. Now we can set the controller to give what we hope will be a good result.  We find out when we open the kiln in the morning whether it is right or not.




I am not advocating returning to the days before controllers.  I enjoy my sleep and social life too much for that.


I am advocating the use of a feature almost all controllers have.  The Delay function.  On most controllers, it is the first thing that comes up on the display.  We mostly ignore that and proceed to the first ramp.  We set the controller to fire immediately, so that it will be done overnight and we can look in the morning or when we come back from work.  That way all the waiting for the piece to be finished can be eliminated.  We can go to work or to sleep knowing that the firing will be done when we can get back to the kiln.

This practice leads us to miss the real learning process that is available by observing the process of the firing.  Observing the firing can tell you when your slump is done, when it is slipping to the side, when it breaks, when more time is needed, when more heat is needed – almost everything that people ask questions about their slump – or in other instances, the fuse or melt.

People ask what temperature they should use for the kind of tack fuse they want.  Many suggestions can be made.  Trial and error will eventually tell which is the right combination of rate, temperature and time for the result you want. Observation during the firing will tell you immediately when the temperature is high enough, or the soak is long enough.  As you peek into the kiln through the observation ports you can advance to the next ramp when you have achieved the look you want. 

You do have an observation port, don’t you?  It is one of the essential features to be included in a kiln. If you don’t have one, you can open the lid or door momentarily to observe the state of the glass in the midst of the firing.  You could make an observation port by drilling through the casing and insulation.  You then place fibre blanket or a formed piece of kiln brick in the hole when not in use for peeking into the kiln.  You will not change the performance of the kiln by doing this.  Of course, if you have side elements, this retrofitting of an observation port is risky.


“I need a life.  I have to work.  I have to sleep.  I can’t be around my kiln all the time.” 


The legitimate responses to the idea that you should be around to observe the work at critical temperatures are that “I need a life.  I have to work.  I have to sleep.  I can’t be around my kiln all the time.” This is where the Delay function comes to your aid. You can use the Delay function to make sure the firing is at the critical point for observation at a time that is convenient for you.  This way, you do not disrupt your normal life.  Your social life can continue and you can get some sleep too.

An example will help understanding how you can make use of the Delay function. 

If you have time before you go to work, you can set it so that the firing comes to the critical point about an hour before you have to leave for work.  Or if it is better for you, you can set it so that time for observation is after you get home from work, or after dinner, etc.  Even if you don’t have a day job, you can use the Delay function to make sure you will be able to give the kiln the attention it needs at a convenient time for you.

How do I do this?  It is a setting of the amount of time to elapse before the kiln starts to fire on the first ramp.  Most programmes have firing times for each ramp.  You select the cumulative times up to the end of the ramp for the observation to begin.


This does not need to be difficult

This sounds complicated?  Not really.  It is a bit of arithmetic, though.  Add the times for each ramp together to get the time the kiln will take to get to the observation temperature and soak. 

E.g.:
200C/hour to 630C for 30 mins   =3.15 hours plus the 0.5 hour soak.  (divide the target temperature by the ramp rate, in this example 630/200=3.15 hours or 3 hours and 9 minutes).   Don’t include the soak time in this calculation as that is the part of the observation that is or may be variable.

Assume it is 10:00pm and you want to look at it at 7:00am.  This is 9 hours. The kiln needs 3 hours and 9 minutes to get to the temperature you want to observe the slump.  Subtract 3 hours and 9 minutes from the 9 hours you have and this gives you 5 hours and 51 minutes to set in the Delay function. 

Some controllers do not allow hours and minutes, but require only minutes.  In this case, multiply the hours by 60 and add the minutes.  In the example, there are 300 minutes in 5 hours plus 51 minutes gives 351 minutes to be put into the delay function. 

In this example, this will have the kiln at 630C at 7:00 am. Ready for you to observe the progress of the slump.  When the slump is finished, you can advance to the next segment and head off to work, allowing the cool and annealing to proceed, and knowing the slump was successful.  The same applies to other times of the day.  You could, for example load the kiln and schedule the delay to be at the critical temperature for when you come home from work.


Setting the delay function for an exact tack fuse is a little more complicated.


If you are looking to get an exact tack fuse profile, the schedule will be a little more complicated.  Say you want a rounded tack fuse that you think will be achieved at 750C in 10 minutes.  The schedule might look something like:
Ramp 1: 200C/hour to 650C for 30 minutes =3.15+0.5 hours =3.65 hours
Ramp 2: 300C/hour to 750 for 10 minutes =0.33 hours (750-650/300) + 0.167 hours soak.

Adding these two ramps together gives you 3.95 hours.  Here you include the soak at bubble squeeze temperature in the first ramp, but not in the second, because that is what you are checking on. If it is 7:00am now and you won’t be back until 6:00, that is 11hours until you will be looking in at the progress of your piece.  So you subtract 3.95 from 11 and you set the Delay as 7 hours, 57 minutes (or as 477 minutes).  Then it will be ready for observation when you come home.



Won't I loose firing time by using the delay function?


You may feel that you are going to lose a firing by using the Delay function.  You often can peek into the kiln in the morning to see how things have turned out by using the overnight firing.  But there normally is still more cooling down time required. 

If you delay the top temperature until the morning to see what is happening, you still have the rest of the day for the kiln to cool and be ready for re-loading in the afternoon or evening.  During that time, you can be preparing the next firing.  So you have not lost any kiln time, but you have gained the knowledge that the firing is OK through any adjustments you made at the critical temperatures.

If you were to fire during the day to be able to open the kiln in the evening as your normal practice, you will lose one firing at the start of this kind of practice.  As you progress with the new practice, you will find that you do not lose the number of firings you are able to complete in a week.  Again, you are preparing the next kiln load while the kiln is cooling.

Yes, it does require doing things a little differently.  But essentially it moves the kiln preparation on by 12 hours.  That’s why I call it diurnal firing.  You are just changing by 12 hours your daily practice. You make things ready for the kiln to fire overnight, and prepare the new piece(s) during the day.  Or prepare the pieces in the evening to fire during the next day.  You still are preparing the next kiln load as the kiln cools off from the previous firing.


The extra planning effort is rewarded by more rapid learning


This little extra planning is rewarded by the ability to see what is happening in the kiln, so that you can adjust during the firing, rather than having to do a firing again, or in the worst case, completely re-make a piece after a disaster. 

You also learn much faster about the desired programmes required to get specific results.  Instead of doing multiple firings to find the exact temperature needed for the desired result, you can do it in only one or two firings.  This saves you lots of time, glass and electricity. 

Observation is really necessary for free drops – aperture drops, screen melts, pot melts, etc.  These require observation to get the desired results, as their progress is so variable from one firing set up to another. Using the Delay function will enable you to have the firing at the stage where observation is important when you are best able to be there to watch.

The alteration to your working practices to make use of the Delay function will be amply rewarded by the rapid learning that observation of the firing promotes.  This essential tool to aid in designing appropriate firing programs is too often ignored in teaching and using firing schedules.

Finally, it allows you to set up programs that are pre-set for your kiln and kind of work.  You will have learned the exact rates and temperatures and soaks to put into your programs.  These become your saved schedules that are tailored to your practice.