Showing posts with label Moulds. Show all posts
Showing posts with label Moulds. Show all posts

Wednesday 3 May 2023

Texture Moulds

 Texture moulds are a form of bas relief in reverse. The texture of the mould is the bas relief. The glass formed over the shapes is in negative relief. The light is refracted through th
e back to give an image of bas relief although the surface is smooth.

 

Example of wave form texture mould

 These moulds are prone to produce bubbles at the generally recommended tack fuse temperatures. The glass often sticks to the mould if there is not sufficient draft to the parts of the image, or if insufficient separator is used. Often the moulds are produced with a rim around the edges, which trap the glass.

 The usual temperatures are too high. These moulds are an exercise in patience. The temptation is to fire higher than slumping temperatures to get good definition in the glass. However, a number of problems, especially bubbles, can be avoided by staying at the high end of slumping temperatures. This means the top temperature would be about 680C. To compensate for this low temperature, the soak needs to be three hours or more. To be sure the definition desired has been achieved, peeking near the end of this long soak is necessary. 

 Moulds that are produced with a rim around the edges can trap air and create bubbles. The rim forms a perimeter dam to confine the glass. If the rate of rise is quick to a high temperature, the edges can be sealed against the rim before all the air has escaped. It is advisable to cut the glass for these rimmed moulds a bit smaller than the internal dimensions formed by the rim.

 

Example of textured area surrounded by a rim

 Use of single layers on texture moulds can lead to large, thin bubbles. This is most prevalent when using high temperatures. Since the single layers tend to form more slowly than an already fused two-layer piece, the temptation is to use higher temperatures. The higher temperatures soften the glass to such an extent that often bubbles form over the lower areas of the mould. Instead, low temperatures with extremely long soaks should be used to allow the glass to conform to the undulations of the texture without dog boning or developing bubbles. Of course, peeking will be required to determine when the texture is achieved. With single layers, the surface will have greater undulations than with two layers. The thinness of the single layer cannot fill the depression the way two layers can.

 


 Rapid rates to high temperatures can produce internal bubbles too. These moulds have a multiplicity of hollows and depressions. Just as people are warned about depressions in their shelves, the depressions in the texture moulds can cause bubbles too. This means there are even more possibilities for bubble creation than on apparently flat shelves. Long slow bubble squeezes are required to allow air from under the glass.

 Glass sometimes sticks to the mould. This is most often blamed on insufficient separator. Boron nitride is a good separator for these moulds especially if you go to tack fusing temperatures. At slumping temperatures, kiln wash will normally be sufficient. Both of these separators need to be applied carefully, as there are relatively steep slopes throughout the mould. Spraying needs to be done from at least four angles to ensure all the sides are covered.

 Painting on kiln wash is a little more difficult, as the solution is so liquid, it tends to run down the slopes without much sticking. One means of rectifying this is to tip the mould in a circular motion to move the still liquid kiln wash solution around the slopes.

 Less often thought about is the draft of the shapes of the mould. If the slopes (draft) in the mould are too steep, the glass will “grab” the ceramic mould, because the ceramic contracts less than the glass when cooling. If shapes of the mould are steep and deep enough, the glass may even break as a result of this compression of the mould.

 

An example of some nearly vertical elements and a rim

 Of course, if a flat front surface is required, a higher than slumping temperature must be used. This is required to allow the glass to flow to the lower portions of the mould. It still should be as low as possible, but with very long soaks.

 Avoidance of bubbles on, and sticking to, texture moulds is best achieved by avoiding high temperatures, use long soaks, use two layers, and avoid extending glass to the rim. These combined with observation of the progress of the firing will produce the best results.

 

Other information is available:

Low Temperature Kilnforming, an Evidence-Based Approach to Scheduling, an ebook

Bas relief

Layups promoting bubbles


 

Wednesday 19 April 2023

Drying Kiln Washed Moulds

A question about kiln wash. Do you have to let each coat dry while applying before applying the next coat?

 There seems to be a popular notion that newly kiln washed moulds must be cured before use.  I'm not sure where the information comes from, and no reasoning is given.  It is suggested that that quickly heating newly kiln washed moulds to 550°F (290°C) is important.

 If you want to make sure the mould is dry, this may not be the best way to do it.  All ceramics have a cristobalite inversion at around 225°C/437°F.  This a very rapid increase in volume of 2.5% that often leads to cracks and breaks in ceramics when the rate of advance is quick.  The mould will react better and last longer if the rate of advance is slow until that inversion temperature is passed.  But also note there is a quartz inversion at around 570°C/1060°F that is significant.

 

 This is another reason to advance the temperature slowly when slumping or draping with a ceramic mould.  A further reason to heat slowly is to avoid steam formation within the ceramic body.  If the steam is created over a short time, the force can be great enough to break the ceramic.  To ensure the water evaporates, a soak at 95°C/203°F for a significant amount of time is a better, safer option.

 But in addition to all these precautions, it simply is not necessary to cure kiln wash on slumping and draping moulds made of ceramics.  The glass does not begin to move until after 540°C/1000°F. Therefore, the kiln wash will be dry long before the glass gets near slumping temperatures.  Any vapor caused by evaporating water will escape through the vent holes in the mould or under the glass at the rim, as it will not form a seal until higher temperatures.

 

Newly kiln washed mould beside others already fired



 If you want to be sure your kiln wash is dry before you put the mould in the kiln, you can leave it in a warm ventilated space, or even on top of your kiln while it is being fired.  Using either drying method will dry the kiln wash sufficiently before the glass is placed on the slumping mould.

 The other part of the question was about drying the kiln wash between applying coats. It is not necessary to dry between coats of kiln wash.  In fact, a better result is obtained by applying all the coats at one time. It is not like painting wood. The result of applying all coats is a smoother surface.  There is no dragging of the dry powder along with the wet kiln wash as it is being applied over the existing coats.

 Kiln drying ceramic slumping and draping moulds is not necessary. It only adds another, unnecessary step in kilnforming preparations.  There are exceptionally good reasons to avoid rapid firing of damp moulds. 

 Some extra care could be taken with texture moulds and those intended for casting.

Wednesday 25 January 2023

Glass Sticking in Cast Iron Moulds


Cast iron bakeware moulds have achieved popularity in decorative glass casting. One problem that seems to be common is that the glass sticks in the mould when cooled.

 

A typical cast iron heart-shaped baking mould

Choosing

 When choosing the mould, try to avoid those with vertical sides. The glass will come out more easily if there is a slope from to top to the bottom of the mould cavity. But it doesn’t stop there.

 The surfaces of cast iron moulds are rough. In casting, the glass conforms exactly to the mould at higher temperatures. On cooling the iron contracts more than the glass, making "sticking" more likely.

Preparation

 Mould preparation should include grinding down the high points to make the mould surface smooth.

 Preparation should also include seasoning of the mould. Clean well with soapy water. Dry. Put a little mineral oil on a paper towel and wipe all the surfaces. Place the mould upside down on short posts. Fire to 300°C/570°F with a 30-minute soak and then turn off. The oil will burn off. You can place fibre paper underneath to catch any excess oil you may have put onto the mould surfaces.

 If you are using kiln wash as your separator, mix it thicker than usual, say 3 parts water to one of powder. This is to give a thick coating of separator on the mould. It may be that you need to heat the mould to avoid runs.

 If you are using boron nitride, it may be possible to add more layers. But this runs the risk of the separator coming off onto the glass.

 Firing

My final suggestion is to use lower temperatures combined with longer soaks.

Releasing

 If the glass still sticks to the mould, turn the mould over. Support the mould with brick or shelf pieces. Tap the back of the mould with a rubber mallet. Not too hard because cast iron is brittle. This most often shifts the glass.

 If the glass is still stuck, put the mould in the kiln upside down on posts a little above the shelf. Fire slowly (say 125°C/225°F) toward 540°C/1000°F. Program the anneal and cool you used previously. Observe frequently to know when the glass has fallen out of the mould. When the glass has separated from the mould, advance to the annealing segment.

 Of course, if the glass has fallen out of the mould by 400°C/750°F, you will not need the anneal soak, although you still will need the controlled cool. So, you can skip the anneal cool and go to the controlled cool down segments.

 

Wednesday 18 January 2023

Problems when Slumping

A range of problems appear in slumping.  These include bubbles, splits, puddling and more. Several causes are possible.  This blog looks at the problems, possible causes and remedies.

Bubbles




Blocked Vent Holes

 Absence of, or blocked holes at the bottom of the mould to allow air out into the kiln on all but shallow or cylindrical moulds can be a cause of bubbles. Prop the mould up on stilts if the hole does not go directly from under the glass and out of the side of the mould. Alternatively, drill a hole in the side to allow the air to escape from under the mould.

Wet moulds

In kiln forming, the moisture resulting from recently applied kiln wash is considered by some to be a cause of bubbles. The water in the mould will be evaporated by around 250°C/482°F in any sensible slumping schedule. At this temperature, the glass will not have begun to move, so the moisture can move out of the mould through any vent holes at the bottom of the mould, or past the glass as it rests on the edge of the mould.

The circumstance when a damp slumping mould could cause difficulties is when using an extremely fast rise of temperature. This is detrimental to the mould also, as the rapid formation of steam is more likely to break the mould rather than the glass. It is also unlikely to result in a good slump conforming to the mould without significant marking.

In casting with wet plaster/silica moulds water vapour can move toward the glass. Casting practice has alleviated some of the problem, by having an extended steam out before 200°C/395°F, or pouring the glass into the hot dry mould from a reservoir.

In pate de verre, the mould is most often packed while wet. The small particles normally allow any steaming of moisture to pass through, and so be dry at forming temperatures without blowing any bubbles.

Top Temperature

Bubbles at the bottom of the glass are much more likely to be the result of too high a process temperature if the previous two conditions are met. This high temperature allows the glass to slide down the mould.  The glass is not plastic enough to thicken and form a puddle at the bottom at most slumping temperatures. Instead, it begins to be pushed up from the lowest point due to the weight of the glass sliding down the sides.

 

Avoiding uprisings on the bottom of bowls.

Vent Holes

Make sure the holes are clear before placing the glass.

Wet Moulds

Ensure that the moulds are no more than damp before placing in the kiln.

Top Temperature

Firing for too long or at too high a temperature will cause the glass to continue sliding down. Having nowhere else to go, the bottom begins rising. This is the result of the weight of glass pressing down onto the bottom, especially on steep-sided moulds. This is a consistent experience across several kilns and with multiple users.

Low Slumping Temperatures.

Glass at low temperatures is affected largely by its weight and viscosity.

Viscosity Effects

Thick glass will fall more slowly than thin, when using the same schedule. Thick glass takes longer to equalise the upper and lower surface temperatures. Since the lower surface is stiffer (has a higher viscosity) it will move less using the same heat up rate. This means slower rates should be used, or a significant soak just above the strain point will be required. This softening of the glass evenly throughout the rise to the top temperature is critical in obtaining even slumps.



Splits in slumps

Without the slow progress to top temperature there can be problems. Sometimes the upper surface of the slump appears fine. It is the bottom that exhibits a split or tear that does not go all the way to the upper surface of the glass. It indicates the rate of advance was too - but only just - too fast to achieve the desired result.

 The ramp rate has been quick enough to get the top heated and become plastic. But the lower surface is still cold enough that it is brittle. The weight of the upper softened glass begins to push down before the bottom has become hot enough to be fully plastic. The force of the weight on the bottom can be enough to cause the glass to separate, rather than move as the surface does. This split on the bottom but not the top indicates a slower rate for that thickness is required. This shows the interaction between viscosity and weight.

 Sometimes the split is evident from the top. The cause of this kind of split is the same as a split on the bottom. But the ramp rate has been much faster in relation to the thickness or profile of the piece.



Weight

It is possible to have glass slightly overhang slumping moulds if you use low temperatures. The glass has the appearance of behaving differently at these low temperatures than at fusing temperatures.  

 

At low temperatures it cannot form exactly to the mould. It falls first in the middle. Because the glass is not very plastic, the edges rise up from the mould at first, because the weight there is not great enough to allow the unsupported glass to bend. The edges stay in line with the beginning of the bend in the middle.  

 

At the beginning of the slump the glass is not soft enough to stretch. It maintains its dimensions as it falls. For deep moulds, the glass moves progressively to move over the lip of the mould and begins to fall into the mould.



As the slump proceeds, the glass stretches very little and so the edges move further down the mould. The glass continues to slide down at the edges until the centre settles down onto the mould bottom. 



During this slide into place, the glass can become marked. This is usually most evident on back of the upper portions of the glass where most sliding is happening.

 With higher than necessary temperatures, the glass can continue to slide down the mould. Since the glass is still not fully plastic, the weight pushes the glass at the bottom upwards. This gives the appearance of a bubble, but is an uprising due to the pressure of the glass at the sides of the mould.

 


During the sliding of the glass along the mould, it becomes more marked. The marks often look like stretch marks. And in many senses, it is exactly that.

At higher temperatures or longer holds, the glass softens more. At this point the uprising collapses and the glass begins to thicken at the bottom. It also thins slightly at the top.


Remedies

Ramp Rates

The ramp rates should be slow.

  • ·        This allows the glass to heat evenly throughout. This is important to get even slumps. 
  •          Contrasting colours or a combination of opalescent and transparent glasses heat evenly with slow rates.
  • ·        Slow rates allow glass with tack profiles to heat evenly.
  • ·        It helps avoid splits in the bottom of slumped glass.
  • ·        It allows lower slump temperature to be used.

Low Temperatures

Using the lowest practical slumping temperature gives the best results.

  • ·        It allows glass with small overhangs of the mould to be successfully slumped.
  • ·        Low temperature reduces the mould marks on the back of the glass.
  • ·        Fewer stretch marks are in evidence.
  • ·        Low slumping temperatures with long soaks reduce the uneven slump that is sometimes in evidence with deeper moulds.
  • ·        Low temperatures allow different colours to heat more evenly.
  • ·        Low temperatures reduce the thinning or thickening of glass in a high temperature slump.

More information is available here.

This information shows you need to keep the slumping temperature to the minimum required. To find out what that temperature is, watch the slumping in stages in brief peeks (do not stare!). Look at the piece for a second or two every five minutes before you reach your desired temperature and at intervals throughout the hold.

If it has slumped completely at the beginning of the hold, you are firing too high. Reduce your temperature in subsequent firings and watch in the same way to find what the required temperature and time is. There is absolutely no substitute in slumping but to watch by peeking to learn what your mould and glass require. 

What Temperature?

To determine the temperature needed for your piece, use slow ramp rates – between 100°C to 150°C/ 180°F to 270°F. Set your top temperature around 630°C/1170°F for a simple slump of fusing glass. For bottle or window glass you will need a temperature closer to 720°C/1330°F.

It is necessary to observe the progress of the slump as you do not know the best slumping temperature. Start watching the glass at about 10-minute intervals from about 600°C/1110°F. There is not much light in the kiln at this temperature, so an external light is useful. You can also observe the reflections of the elements on the glass. When the image of the elements begins to curve, you know the glass is beginning to bend. You then know that is the lowest possible slumping temperature when using that ramp rate.

Hold for at least 30 mins at the temperature when the glass begins to visibly drop. This may or may not be long enough. Continue checking at 5-10 minute intervals to know when the slump is complete. If the glass is completely slumped before the soak time is finished, advance to the next segment. If not fully slumped, you need to extend the soak time. These operations mean you need to know how to alter your schedule while firing. Consult your controller manual to learn how to do these things. Stop the hold when complete and advance to the anneal.

In some cases, you may need to increase temperature you set by 5-10°C. You can do this by scheduling a couple of segments with 10°C/18°F higher temperature each and 30 minute soaks each.  If you do not need them, you can skip them. If you do need the extra temperature, you have it scheduled already.  You will know if you need the extra segments by whether the glass has begun to curve at the start of the first of the soaks.  If it has not after 10 minutes, skip to the next segment. Once the new temperature has been reached, check for a curve in the glass. Again, if after 10 minutes there is no curve, skip to the next (higher temperature) segment.

A low temperature slump will allow the glass to conform to the shape of the mould without softening so much that it takes up all the markings of the mould. That in turn means there are spaces for the air to escape from under the glass all the way to the slumping temperature as well as through the air holes at the bottom. It also gives the most mark-free slump possible for your shape.

If you are slumping at such a temperature that the glass has sealed to the mould, you are firing too hot anyway. Or put more positively, use a low temperature slump, that is, a slump at the lowest temperature to achieve the desired result over an extended period of your choice.


More information is available in the eBook Low Temperature Kilnforming available through Etsy or Bullseye.

Wednesday 30 November 2022

Square Drapes

Two pyramidical moulds. One stepped and the other smooth.

 This kind of draping mould with flat sides will never work very well as a draping mould.  The draping sides have to compress. This takes a long time and is likely to cause folds in the glass.

 The common experience is that two opposite sides drape first and conform to the mould. This displaces the compression necessity to the other two sides. This "taco" style initial drape is common in all drapes. It is usually observed in handkerchief drapes.  In the early stage of draping two sides of the glass fall, creating a taco shape. With continued heating, those long sides fall and spread the initial draped sides to become almost equal. 

 This taco formation also occurs on the pyramid style mould, giving two flat sides.  The glass on the other sides then fall. As the glass area is now larger on these sides than the mould area, a drape or fold is formed.  Imagine the drapes a square piece of cloth place on a pyramid would create. The cloth has more area than the sides of the pyramid.  The excess cloth creates folds at each corner.  The same happens with the glass.

 This draping fold can be minimised by using low temperatures and long (multiples of hours) soaks.  This allows all the sides of the glass to begin forming at more or less the same time.  I am not sure the folds can ever be completely eliminated.  With extremely long soaks, the drapes will flatten to the rest of the glass. 

 Annealing difficulties are caused by this folding.  It will create thick overlaps.  This in turn will cause the annealing difficulties. There are areas that are much thicker than others.  If you started with 6mm glass, the folds will create areas that are 18mm thick. 

 Making sure this glass - with such large differences - is all of the same temperature will require long annealing soaks.  It will also require very slow cooling segments.

 Square drape moulds are rarely successful. Folds are created at the corners, rather than fully conforming to the mould.

Wednesday 20 July 2022

Slump Shrinkage



Glass on rectangular moulds often does not maintain a straight edge.  It pulls in and tends toward the “dog boning” of fused single layer glass even if not so dramatic.

Explanation

The reasons for the pull-in on rectangular moulds are similar to those for dog boning. You should note that squares are special cases of the general class of rectangles. The discussion here applies squares just as much as to rectangles.

If you grid the rectangular glass, it illustrates that the glass in the corners is moving in two directions.  It is moving and slightly stretching into the mould.  At the same time, it is trying to compress into the corner of the mould.  The glass along the sides are moving in only one direction – stretching only slightly and moving toward the bottom of the mould.

There is more compression than stretching in the corners. The sides have only to move in one direction and experience no compression and so move toward the bottom more easily.

Such is my explanation of the experience. 

Avoidance

The real question then is how to prevent this pull-in that is so commonly experienced on rectangular moulds with no rims.  One way would be to avoid such moulds altogether.  This of course, is not practical, so some approaches to compensate or avoid the problem are needed.

It is possible to compensate for this pull-in by slumping a rectangle with slightly bulging sides.  Rather than a regular rectangle, you create one with slightly outwardly curved sides.  Getting the exact amount of curve will be difficult and achieved only after a number of experiments.

The opposite compensation would be to round the corners of the glass, so there will not be so much glass to fit into the corners of the mould.  This again will require experimentation to achieve a predictable result.  And it often would interfere with the appearance of the final piece.

The easiest, but not always successful, way to prevent the pull-in is to alter the scheduling for slumps on such moulds.  It is a well-known property of glass that it does not have a single softening point, but progressively softens with temperature and time.  You can take advantage of this by using four elements in combination. 

·        Use a slow rate of advance to the slump temperature, to allow the glass to evenly absorb a lot of heat on the way to slumping. 
·        Use a low slumping temperature  This may be as much as 30°C less than your usual temperature.
·        Use a long soak at the slumping temperature.  This may be hours.  You need to allow the glass to slump into the mould without stretching.  To avoid stretching, you need a low temperature.  At low temperatures, the glass requires a lot of time to conform to the mould.
·        Observe at 10- to 15-minute intervals once the slumping temperature is achieved.

These processes are outlined in a blog post on dog boning.  Further information is available in the ebook: Low Temperature Kiln Forming.





Avoidance of pull-in of the glass on rectangular moulds is related to scheduling and observance.  There are some compensations that can be tried, but require considerable experimentation to be successful.

Wednesday 13 July 2022

Ceramic Drape Moulds

Characteristics of materials

One of elements you need to consider in selecting a mould for draping is the characteristics of the ceramic material in relation to the glass being draped.  

Ceramic

Ceramic materials have what are called inversions. These are  points at which the ceramic has a quick change in expansion both on the heat up and cool down.  The two major ones are cristobalite inversion temperature at around 225°C and the quartz inversion at about 570°C.  The Crystobalite inversion is a sudden change of about 2.5% and the quartz is a sudden change of 1%.  These are very sudden and dramatic changes in comparison to the average of around 0.1% over the temperature range of 570°C to 800°C.  The crystobalite inversion does not occur until ca. 225°C.  This means that the whole structure of the ceramic is contracting less than the glass – exhibiting a CoE of ca. 66 rather 90 to 96.

Ceramic drape mould from Creative Glass Guild

Glass

We are used to saying glass expands and contracts at a standard rate, depending on the glass this may be a CoE of 83 to one of 104.  This is not the case.  The coefficient is an average calculated between 20°C and 300°C.  If you change the temperature range, the coefficient will also change.  And if you look at the range 570°C to 580°C you find the CoE is around 500.  This means that as the glass cools into the annealing range, it is contracting about 7 times faster than the ceramic. 

This dramatic difference in contraction means that the glass is attempting to crush the ceramic by enclosing it tightly.  Sometimes it does it so strongly that the strength of the glass is exceeded, and it breaks.

Possibilities

It is possible to drape over ceramic in certain conditions.

Influence of draft

The term “draft” indicates the slope of the sides of the form.  The steeper the sides, the more likely the glass is to trap the ceramic mould.  To be useful, the draft of the mould needs to be sufficient for the glass to slide upwards on the mould as it cools. This means the mould needs smooth sides and be well covered with a separator.

Compensations

You can compensate for steep drafts by wrapping the ceramic form in 3mm refractory fibre paper.  You can bind this with high temperature wire to ensure it stays throughout the firing. The fibre paper can be compressed and so provides a cushion between the rapidly contracting glass and the slowly contracting ceramic.

These need a circle of 3mm fibre paper over the open top of the kiln posts that have no draft at all before use. Of course, they need to have a circular piece of fibre paper over the hole in the post.


The use of ceramic forms to drape over requires care about the draft of the ceramic or addition of a cushion to avoid the greater contraction of the glass than the ceramic grabbing the mould so tightly it cannot be removed.

Wednesday 9 February 2022

Frosting on slumped glass

 [We’re] Having a few challenges with a stainless-steel S-curve mould (15cm x 10cm [prepared with boron nitride]. … When we slump a piece of glass, we get a frosted effect … in places where the glass was touching the mould at the beginning. I don't think it's devitrification, because the glass itself isn't cloudy, it's just hundreds of little bumps and dimples.

Photo credit: Adrian Cresswell


 This is a mould that combines draping and slumping in the same firing. The glass must drape over the hump and slump into the valley at the same time. This is effectively two processes in the same firing. It does require some compromise in scheduling as a result.

 The evidence presented shows boron nitride – a slippery surface – was used to prepare the mould. In another firing Thinfire – a powdered surface – was used as a separator. Both created this marking on the back. The schedule was not presented.

 This indicates something other than the separator is creating the problem. Note that the marking also occurs at the extreme right end where the glass would be resting on the lip of the mould. The marking does not occur where the glass is slumping down into the curve. It only occurs where the glass is draping.

 As suggested, this is not devitrification. That occurs on the surface rather than on the bottom. This further indicates the difficulty is between the glass and the mould.

 I suggest the marks are from the glass sliding along the mould. These are frequently called stretch marks. The glass is sliding and stretching along the mould. This blog post contains much more information.

 It is of course possible that insufficient boron nitride was placed on the steel and the glass grabbed the steel. It is worth checking, although I don’t think it likely.

 You might think the Thinfire covering of the steel would make everything smooth. However, Thinfire turns to powder and fibreglass particles after about 400°C/753°F. These particles are drawn along as the glass moves against the mould. The particles can bunch and remain as bumps on the surface of the mould. This may account for the rougher surface with Thinfire than boron nitride.

A summary

These stretch marks occur when the glass moves excessively against the mould. This is usually a combination of high temperature and fast ramp rates. Slumping should be done at the lowest practical temperature. The soak should be long, rather than brief.

The Remedy

 Fire more slowly and to a lower temperature. The Bullseye suggestion from their quick tips is for a double curve (or wave) mould of 250 x 210 x 40 mm (9.85" x 8.25" x 1.6"). They suggest a ramp rate of 167°C to 660°C /1221°F with a soak of 10 minutes for a 6mm/0.25” thick piece.

 In my experience this is too fast. Slumping into this mould can be done at 630°C/1167°F with a 30-minute soak in my kilns using the same ramp rate.

 This is a simple mould to slump and drape into. It is essentially two partial cylinders pushed together in opposite directions. The curves are gentle and progressive. There are no sharp changes of direction. These factors mean that the slow and low approach will work well.

 However, in this case the curves will be even tighter as the full length is 150mm x 100mm/ 6” x 4”. The height is not given, but for a self-standing piece, it likely to be a minimum of 40mm/1.6". This makes for a tight curve on the mould. It is likely the glass will slide more than on a gentle curve. My thought is that the steel mould has been produced without knowledge - or testing - of the practicalities of getting the glass to bend to such a small radius. This means that I would be trying a schedule of about 125°C/225°F per hour to a top temperature of about 630°C/1167°F with a 1.0 to a 1.5-hour soak. The glass is going slump much more slowly with this smaller span.

 With gentle heating -slow ramp rate, long soak - the glass gradually conforms to the shape of the mould without stretching over the hump/crest of the mould. Instead, what happens is that the glass slips slightly from the opposite end of the mould. To counteract this, I place the glass 6mm/0.25” over the upraised end of the ceramic mould. This then finishes just inside the mould’s edge.

 With a steel mould, this is not possible without the glass hanging up on the hot and sharp edge. The glass will need to be at the edge or just inside to prevent hanging up on the end of the mould. The glass will slip down the mould a little, but not so much as to cause problems. It is possible to prop a piece of fibre board at the upturned end of the wave mould to support the overhanging glass if the full curve is required.

 The glass on the high part of the mould will not stretch at the low temperature, but gradually conform to the shape of the mould.

 I have much more information on this and other things in the eBook:

Low Temperature Kilnforming; an Evidence-Based Approach to Scheduling

 


Wednesday 26 January 2022

Trapped Glass


Glass can be trapped in or on moulds in various circumstances. These usually relate to the relative expansion and contraction characteristics of the glass and mould.  The two materials most usually concerned are steel and ceramic.

Releasing glass from steel


Frequently when using steel as dams around glass, the glass becomes stuck inside the steel.  The cause of this is the greater contraction of the steel than the glass.  On cooling, the steel compresses the glass tightly. 

Another circumstance where glass is trapped is while slumping glass into a steel vessel.  If the draft of the sides of the vessel is steep, the glass cannot slip upwards as the steel contracts against the glass, so trapping the glass.

Most successful attempts to remove the glass from the steel are like removing a metal lid from a glass jar.  Heat the metal and try to keep the glass cool.  You can run hot water on the steel while keeping the glass cool.  This will most often allow the glass to be pulled from the steel surround, assuming there was a glass separator applied to the steel.

Putting the whole assembly in the freezer will only increase the grip of the steel as it will contract even more than the glass.



Prevention of trapping the glass involves placing a cushion between the steel and glass.  This is usually 3mm fibre paper.  Sometimes this has a layer of Thinfire added to give a smoother edge to the glass.  Other times, the fibre paper is coated with boron nitride.  There is no need to use both Thinfire and boron nitride, of course.


Releasing glass from ceramic


The difficulty of glass trapping ceramic occurs during draping.  Ceramic expands and contracts less than glass.  This means that the glass will trap a kiln washed ceramic shape with a steep draft.  The glass on cooling, contracts more than the ceramic which means the glass is tightly encasing the ceramic. 

A ceramic draping mould from which  it may be difficult to remove the glass.

Most successful attempts to remove the glass from the ceramic form include either gently warming the glass or freezing the whole assembly.  You could place the glass in a bath of warm water.  This encourages the glass to expand, but does not heat the ceramic.  This usually provides enough gap to ease the glass from the ceramic form.

The other approach is to put the whole into the freezer.  This is utilising the greater contraction of the ceramic to release the glass. This is less immediate than the warming of the glass, of course.

Prevention of trapping glass on ceramic with shallow drafts involves covering the form with 3mm fibre paper to provide a cushion during the contraction.  The fibre paper may need to be attached to the form by binding with high temperature wire, as glues will not survive the heat of draping.

Further information is available in the ebook: Low Temperature Kiln Forming.