Sunday 26 June 2022

Glass 101: Fused Silica vs. Quartz

 

Glass 101: Fused Silica vs. Quartz

Posted  on 


Quartz, fused quartz, quartz glass, silica, fused silica… the list of terms used to describe various silica-based materials is long, confusing, and often misunderstood. In this article, we take a close look at the unique properties of quartz and fused silica (and a few related materials), and clear up the confusion surrounding these terms.

Quartz vs. Silica

The first important thing to know about quartz and fused silica is that they both primarily consist of the same ingredient: silica, also known as silicon dioxideSilica has the chemical formula SiO2 and is the primary constituent of most types of glass. The main form in which silica is found in nature is the mineral quartz: a hard, transparent crystalline material that makes up an appreciable fraction of the Earth’s crust. While quartz primarily consists of silica, it also contains naturally occurring impurities in various proportions depending on its geological origin.

So, silica is a specific chemical compound, silicon dioxide, with the chemical formula SiO2. On the other hand, quartz is a naturally occurring crystalline mineral, which consists primarily of silica but contains some impurities.

Crystalline and Amorphous Solids

To fully understand the differences between different silica-based materials, we first need to review the fundamental differences between crystalline solids and amorphous solids.

The distinction comes down to how atoms are arranged inside the solids. In a crystalline solid, the constituent atoms are arranged in regular, repeating patterns known as crystal lattices. Quartz is an example of a crystalline silica-based material: silicon and oxygen atoms are arranged in a well-defined ordered structure.

However, in an amorphous solid, the atoms have no long-range order. The seemingly random arrangement of molecules in an amorphous solid resembles that of a liquid, except that they are fixed in place and don’t move around. Most materials that we think of as “glass” are amorphous solids: in fact, any material with an amorphous atomic structure can be described as “glassy”.  

Whether atoms are arranged in an orderly manner or oriented randomly can profoundly influence a material’s characteristics. One of the most striking examples is the glass transition effect exhibited by amorphous solids. Outside the world of silica or other oxide-based materials, disordered “glassy” metals are often used for their unusual mechanical characteristics compared to conventional metals.1

Silica-based materials – like quartz – can be characterized both in terms of their chemical composition and whether they are crystalline or amorphous.

Defining Silica-Based Materials

Now that we’ve reviewed some important fundamentals, we can define the differences between quartz, fused silica, and other silica-based materials.

Quartz

As mentioned previously, quartz is the main form in which silica occurs in nature. Quartz is a crystalline solid; so, while it can resemble glass both in terms of its appearance and its chemical makeup, it has very distinct properties from glass.

Industrial applications of quartz (that is, the crystalline mineral) are limited, but include quartz crystal oscillators in electronic systems – most familiarly in wristwatches.

Perhaps confusingly, “synthetic quartz” can be manufactured for industrial quartz applications. This would perhaps be better referred to as crystalline silica, but is often referred to simply as “quartz.”

Fused Silica and Fused Quartz

Here, the word “fused” refers to a processing step: fused silica is nominally pure silica that has been melted and cooled to form a glassy, amorphous solid. Fused silica resembles other glasses in many ways; but it does not contain any additives. Fused silica is a specialty material with a number of high-performance applications.

The terms “fused silica” and “fused quartz” are often used interchangeably. More accurately, “fused quartz” refers to an amorphous solid formed by melting naturally-occurring quartz. So, while fused silica is ostensibly pure SiO2, fused quartz contains impurities depending on the quartz that was used.

Silica Glass and Quartz Glass

These terms are typically used in a more generic sense, and can usually be considered interchangeable. Both of these terms could refer either to fused silica or fused quartz.

Applications of Fused Silica

While fused silica is chemically similar to quartz, its amorphous structure gives it a number of distinct and highly desirable thermal, mechanical and electrical properties.

Glasses commonly contain additives such as alkali, alkaline earth, or other oxides to lower the glass processing (melting) temperature and to improve chemical and physical properties – but fused silica is very pure. Consequently, it has higher working temperatures but offers different characteristics from other glasses.

Fused silica has a very low coefficient of thermal expansion, meaning it does not expand or contract much when heated or cooled. As a result, fused silica is highly resistant to thermal shock and can withstand very rapid heating or cooling without cracking. The thermal characteristics of fused silica make it highly valuable for high-temperature industrial components such as crucibles, trays, and boats for steelmaking and glass manufacture.2

Fused silica is transparent to a very wide spectrum of light, extending from deep ultraviolet to far-infrared. This makes it a key component in optical fibers, as well as in a range of lenses, mirrors, and other UV- or IR-transmitting optics.3,4

Fused silica is also extremely chemically inert and resistant to most acids (with the notable exception of hydrofluoric acid). This chemical inertness lends fused silica to biomedical applications, often taking the form of porous silica.

The combination of thermal stability, transparency, and strength makes fused silica a strong candidate for new and developing applications such as photolithography substrates, etched microwave circuits, and as a protective layer in semiconductor devices.

Custom Glass Solutions from Mo-Sci

Mo-Sci develops and manufactures a range of high-performance glasses for technical applications. To find out more about our fused silica and porous silica products, or to discuss a custom glass application, get in touch with a member of our team today.

References and Further Reading

  1. Glassy metal set to rival steel : Nature News. https://www.nature.com/news/2011/110109/full/news.2011.4.html.
  2. Vert, T. Refractory Material Selection for Steelmaking. (John Wiley & Sons, 2016).
  3. Khalaf, A. L., Shabaneh, A. A. A. & Yaacob, M. H. Carbon Nanotubes and Graphene Oxide Applications in Optochemical Sensors. in Synthesis, Technology and Applications of Carbon Nanomaterials 223–246 (Elsevier, 2019). doi:10.1016/B978-0-12-815757-2.00010-3.
  4. Wang, S., Zhou, C., Zhang, Y. & Ru, H. Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm. Appl. Opt. 45, 2567 (2006).

Wednesday 22 June 2022

Ramp and Anneal Rates for Tack Fusing

Tack fusing is more difficult than most realise.  Many failures – usually breakages – occur because the complexity of tack fusing is not fully acknowledged.

Ramp Rate 

Calculations

One of the effects is the slower rate of advance that needs to be used.  The rate of advance needs to be slowed to that applicable to 1.5 to 2.5 times the actual total thickness of the assembled piece. 

Reasons

The reason for this firing for apparently excess thickness is the shading effect of the overlying pieces upon the glass below.  Glass is affected by radiated heat, whether the heat comes from above or the sides.  The parts of the base glass that have glass on top cannot receive the radiated heat.  This means the shaded base glass needs time for the heat to be conducted through the overlying glass to it. 

Beginning of heat input

Progress of heat input showing some parts of the base are compeletly heated while others are not

Glass is a good insulator, resisting any heat transmission through overlying glass. Slowing the rate of advance allows the convection of heat to the lower levels to be adequate to avoid heat stress.  The reason for the 1.5 to 2 factors is that experience has shown a simple applied arrangement will be safe with a factor of 1.5 as the calculated thickness.  If you have stacks or lots of difference in thicknesses, you need a slower rate to allow for the conduction of heat.  This is where the 2 times actual thickness factor is useful.

Finding the Ramp Rate

The information on the rate of advance for evenly thick pieces of 6mm to 9mm is widely available.  Determining the rate of advance for thicker items is more obscure.  You can get some guidance from the manufacturers’ websites.  But where the guidance is for thinner pieces or it is unclear, you need to find another reliable source. 

One very reliable source is the Bullseye annealing chart for thick slabs.    Yes, this chart tells you about the annealing of thick items, not about the ramp rate to the working temperature.  But you can infer the initial rate of advance from the final cooling rate.  The principle is that the glass can survive the indicated cooling, so it should also survive that rate of advance from cold to working temperature.

This means that a set up of a 6mm base with two layers of glass pieces on top distributed around the base, is a total of 12mm.  This should be fired as though 18mm (1.5 times actual) or up to 30mm (2.5 times actual).  In the first case the chart indicates the final cool rate is 150°C per hour.  This can be used as the initial rate of advance to at least 540°C (above the annealing range).  If you choose to use the 2.5 times factor, the initial rate will be 65°C per hour.

This approach gives you a reasonable degree of certainty about how fast you can fire your glass from cold.  Note that you still need to have a conservative bubble squeeze segment in your schedule, especially if the lay up includes areas where air might be trapped.


Annealing rates

Annealing times and rates are normally dependent on the thickness of the fired glass.  But published annealing rates are based on both even thickness across the piece and on cooling from two sides – i.e., not on the floor of the kiln.

Calculating for even thickness

If you have taken your stacked piece to a full fuse, you can anneal for the final thickness.  I would be a little more cautious with a contour fuse and anneal as though it were three to six millimetres thicker than when completely flat because you cannot be certain that the piece is evenly flat unless you obeserve.

Calculating for tack fused

If, however, you are firing to a tack fuse you need to look to schedules for thicker pieces.

Reasons

Glass remains an insulator as it cools.  As glass cools, it must conduct the heat through the thick parts at the same rate as through the thinner parts to avoid inducing stress.  Remember the principle of annealing is to keep all the glass with 5°C or less difference in temperature.  The thinner glass gives its heat up quicker than the thick.  This will induce stress and it can be enough to break the glass in the kiln or, more usually, some long time after the glass is cool.  This means you need to control the cooling to a rate that would be suitable for thicker glass. 

At the beginning of the cool the heat loss is from the surface and to a lesser extent through the shelf.
Further heat loss shows the exposed base layer is giving up its heat throughout, although other areas are only beginning to cool.  It will take some time for the three layer stack to cool.  The uneven cooling leads to the introduction of stress.


Determining the rate

The annealing soak length and the rate of the annealing cool are directly related to the thickness calculated for your piece.  You have already chosen a calculated thickness for the rate of advance to avoid breaking the glass.  Use the rates given in the chart for that thickness for your soak and anneal cool.  Any annealing with a shorter soak and a faster cool risks inducing stress and possible breakage.


Rates of advance and annealing are intimately connected.  A tack fused piece must be annealed as though it were 1.5 and up to 2.5 times the actual total thickness.  Annealing of tack fused pieces cannot be skimped.


Further information is available in the ebook Low Temperature Kiln Forming.


Sunday 19 June 2022

Using Glass for Radiation Shielding

Using Glass for Radiation Shielding

Posted  on 


Certain types of glass offer excellent shielding against various types of radiation, making them indispensable for applications in medicine and the nuclear industry. In this article, we take a look at some of the most common applications of radiation-shielding glass, and the ways in which glass can be modified to shield against radiation.

History of Glass Radiation Shielding

Discovery of x-rays by Roentgen in 1895 was followed by a flurry of x-ray research: around 1000 x-ray research papers were published within a single year. Unfortunately, scientists of the time were late to establish that x-rays were capable of damaging living tissue. By the end of 1896, numerous cases of x-ray dermatitis and more serious conditions were reported within the scientific community.1

Though the risks of radiation exposure were not quickly accepted, radiation shielding equipment was developed as early as 1896. Many of these early interventions made use of lead glass to absorb radiation: These included lead glass backings for fluorescent screens, and thick lead glass goggles to protect against cataracts.

Glass as a Radiation Shield

Today, lead glass and other types of specialized glass are considered vital materials for protection against radiation exposure. As well as offering tunable mechanical, chemical and optical properties, glasses that contain lead strongly absorb gamma, x-ray, and neutron radiation. This unique set of properties makes glass an invaluable radiation shield for applications where line-of-sight is required, such as in medical radiography and nuclear fuel processing.

In many of these applications, radiation-shielding glass finds use in the form of containers known as hot cells and gloveboxes. Both are shielded containers with radiation-proof glass viewing windows, used for the safe storage and manipulation of radioactive materials. Hot cells are more thoroughly shielded heavy-duty containers used for high-intensity radiation sources such as spent nuclear fuel rods. Gloveboxes are used for lower intensity radiation sources such as certain radiopharmaceuticals.

In other areas, screens and windows made from radiation-shielding glass protect healthcare workers and researchers from x-ray sources such as spectrometers and computed tomography (CT) scanners.

Heavy Metal Oxide Glass Modifiers

In general, glasses used for radiation-shielding applications include heavy metal oxide (HMO) modifiers such as lead oxide (PbO) and bismuth oxide (Bi2O3). These chemicals can turn ordinary silicate glass into transparent radiation shields capable of effectively absorbing neutrons, gamma rays and x-rays. The resulting glasses are capable of attenuating radiation at levels comparable to concrete and other standard shielding materials while allowing visible light to pass through.2 Crucially, HMO glasses experience relatively little optical or mechanical degradation as a result of exposure to radiation.

While glasses containing lead oxide are common, increasing the lead content leads to a reduction in both melting point and hardness of the glass.2 This, along with environmental concerns with the use of lead, has encouraged research into other types of HMO glass for radiation shielding applications. These include oxides of boron, tellurium, barium, and silicon.3,4 Some research suggests that these glasses may be able to replace conventional concretes as gamma-ray shielding materials.

Medicine

One key application of radiation-shielding glass is in nuclear medicine. Radioactive sources or materials are used either for imaging purposes (such as positron emission tomography (PET) scans) or therapeutic use (such as radiation therapy). Hot cells and gloveboxes are widely used in the preparation of radiopharmaceuticals, where they allow personnel to process radioactive substances without exposure to dangerous amounts of radiation. Material handling is achieved with the use of remote manipulators or shielded gloves, while radiation-shielded glass windows allow personnel to see inside.

Radiographers are also at risk of exposure to harmful radiation. While scans such as x-rays are generally considered acceptably safe for use in the diagnosis of medical conditions, radiographers carrying out multiple scans per day rely on radiation shielding to minimize their exposure to radiation. Leaded glass windows can strongly absorb both x-rays and gamma rays, allowing radiographers to oversee x-ray or PET scans without exposing themselves to harmful levels of radiation.

Nuclear

Effective radiation shielding is of paramount importance throughout the nuclear industry. Nuclear reactors, spent fuel rods, and fission byproducts all produce many types of harmful radiation in large quantities. Some of these types of radiation are more easily shielded than others: for example, alpha and beta radiation are easily shielded by a thin layer of aluminum or acrylic. However, other radiation types such as gamma, x-ray, and neutron emission can be more challenging to protect against.

Typically, these types of radiation are attenuated by thick concrete shielding. However, in waste reprocessing and laboratory applications, windows of radiation-shielding glass can be used to enable workers to safely view radioactive materials during processing.

Other Applications

Radiation-shielding glass is used in many other applications throughout research and industry, for example in cyclotron maintenance, non-destructive materials testing, and the construction of airport x-ray machines.5 Glass is also used for radiation shielding in space technology for protecting both humans and equipment from cosmic rays — an application for which Mo-Sci is currently developing a lightweight radiation-shielding glass.

References and Further Reading

  1. Brodsky, A., Consultants, A. B. & Ronald, M. Historical Development of Radiation Safety Practices in Radiology.
  2. Manohara, S. R., Hanagodimath, S. M. & Gerward, L. Photon interaction and energy absorption in glass: A transparent gamma ray shield. J. Nucl. Mater. 393, 465–472 (2009).
  3. Lakshminarayana, G. et al. B2O3–Bi2O3–TeO2–BaO and TeO2–Bi2O3–BaO glass systems: a comparative assessment of gamma-ray and fast and thermal neutron attenuation aspects. Appl. Phys. A Mater. Sci. Process. 126, 1–18 (2020).
  4. Singh, K. J., Kaur, S. & Kaundal, R. S. Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems. Radiat. Phys. Chem. 96, 153–157 (2014).
  5. Manonara, S. R., Hanagodimath, S. M., Gerward, L. & Mittal, K. C. Exposure Buildup Factors for Heavy Metal Oxide Glass: A Radiation Shield. J. Korean Phys. Soc. 59, 2039–2042 (2011).

Wednesday 15 June 2022

Hot-Melt Adhesive




Some people have begun using glue guns to stabilise their glass before transporting to the kiln.  These use glue sticks which are a hot melt adhesive.

Hot melt adhesive, or hot glue, is a form of thermoplastic.  It is commonly sold in solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a heating element to melt the plastic glue. The glue is tacky when hot, and solidifies in a few seconds to a minute. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin.

The glue sticks are available in a variety of melt temperatures.  The standard and most commonly available glue sticks are white to cream in colour and the guns have an orange applicator.  The hot glue is delivered from non-adjustable guns at about 195°C.  This is hot enough to burn skin and the possibility of heat shocking the glass should be considered.

3M make a low temperature variety of hot melt adhesive which needs low temperature glue guns – the 3M version is blue, and the sticks contain LT as the suffix to the part number.  This is applied at 129°C.  This is still hot enough to burn skin, but possibly with less risk of thermal shock to the glass.

The risks of breaking the glass from the heat of the glue is one of the risks.   The greater risk is of the effects of the thermo plastic on the surface of the glass.  The glue is a plastic. All of us who have left a plastic item in the kiln can witness to the black smoke created.  So, it won’t do your kiln much good, and will require firing empty to burn out all of the plastic residue. 

It also will not do you glass much good.  The thermo plastic melts and will vaporise at some (unknown) temperature.  But it will leave a residue for the process of devitrification to develop.

My recommendation is to avoid the use of hot melt adhesives for anything going into the kiln.  It is most likely to cause difficulties with the kiln and the glass.


Sunday 12 June 2022

Controlled Pore Glass Manufacturing and Applications

 

Controlled Pore Glass Manufacturing and Applications

Posted  on 


Stylized rendering of a magnified controlled pore glass

Controlled pore glass (CPG) is a high-silica glass that contains pores with a specific size distribution. Porous glasses can be made into a wide range of geometric forms (such as frit, rods, plates, beads, and hollow spheres), and pore sizes can be precisely tuned from the range of angstroms to millimeters. Controlling pore size means that the physical and chemical reactivity of the glass with gases and liquids can be tailored to specific applications such as chromatography, sensing, and filtering.

In addition to this, porous glasses exhibit high mechanical strength, chemical durability, and thermal stability; which make them superior to other porous media (such as polymers and ceramics) for a variety of applications.1

This article covers how porous glass is made, how pore size can be controlled, and some of the varied applications of this unique material. 

Manufacturing Porous Glass

Porous glass can be manufactured via several different routes, each of which produces different characteristic pore structures. The most common methods involve phase separation or immiscibility of alkali borosilicate glass.

Producing controlled pore glass via the alkali borosilicate system

Alkali borosilicate glass systems consist of a silica glass-former with borate and alkali-oxide additives used to lower the melting temperature of the mixture and impart other properties. In other terms, alkali borosilicate systems are mixtures consisting of the chemical species SiO2, B2O3, and R2O; where R is sodium, potassium, or lithium.

Simplified ternary phase diagram for the Na2O–B2O3–SiO2 system. The “Vycor” region corresponds to the phase separable mixtures that can be used to manufacture porous glass. (Bartl et al., 2001)
Schematic showing the formation of porous glass from a phase separated alkali (sodium) borosilicate mixture. (Hasanuzzaman et al 2016)

When the constituents of this mixture are tuned to specific concentrations and heated, the entire mixture undergoes an amorphous phase separation: the mixture transforms into two distinct phases.

One of these phases is an alkali-rich borate phase and the other a silica-rich glassy phase. Crucially, the borate phase is soluble in acid, while the silica phase is not. This means that, following heat treatment, the borate phase can be leached out with a hot acid solution. What remains is a highly pure and porous silica glass skeleton with large surface area: in other words, porous glass.

Controlling pore size

Acid-leaching of a phase-separated mixture generally results in a very narrow pore size distribution, earning the name “controlled-pore glass” and lending the resulting glasses to applications such as adsorptive chromatography of biomolecules.2

The average pore diameter is a function of heat treatment temperature and time, as well as glass composition. Thus, controlling the heat treatment temperature or time (or both) can easily produce porous glasses with a range of pore sizes to suit different applications. Glasses formed via these methods generally have pore diameters in the region of 1 to 1000 nm.3,4

Formation of porous glass using alkali borate systems can also be achieved without inducing a high-temperature phase separation: directly etching the surface of the glass can result in the formation of small pores (1-2 nm) restricted to the surface of the glass.

Other manufacturing routes

Porous glass can also be manufactured by glass sintering or via sol-gel routes. Glass sintering is widely used to produce glass foams with pore diameters in the region of 400 m to 1 mm. In sol-gel processes, a solution of organic monomers (sol) is turned into a glass by removal of the liquid phase. Sol-gel processes have been used successfully to create a range of pore sizes for different applications5,6 and they are becoming more common methods.

Applications of Porous Glasses

Porous glass provides an alternative to fused quartz which is comparatively difficult to produce and form into different geometries. However, many emerging applications make use of the functionality offered by the pores themselves. The high surface area and tailorable pore size distribution of these glasses make porous silica a highly effective filtering material, capable of separating not only the basis of molecular size but also of molecule type.7 This, along with a wide range of possible geometries, has made them useful in biosciences and chemistry.1

For example:

  • Enzyme immobilization and size exclusion chromatography techniques have been developed using porous glass; making use of its extreme chemical inertness, optical transparency, and small pore diameters.5,8,9
  • Surface-functionalization of controlled-pore glass using polyaniline has been used to develop optical chemosensors.10
  • Using additives to finely tune the size of pores can result in functional size-selective catalyst supports.11,12
  • The role of porous glass in targeted drug delivery has been studied, using porous-wall hollow glass microspheres. The spheres provide a porous, inert shell for the introduction and release of drugs inside the body.13
  • Porous glass is also being investigated as a bio-scaffold. These applications make use of the porosity, strength, corrosion-resistance, and biocompatibility of porous glass.14,15

All of these applications are made possible by the tunability of pore size, which enables specific physical properties to be imparted in the glass during the manufacturing process.

Mo-Sci produces high purity (> 98% SiO2 and < 2% B2O3porous glass frit and spheres suitable for applications in industry and research. Contact us to speak with one of our experts about your project requirements.

References and Further Reading

  1. Hasanuzzaman, M., Rafferty, A., Sajjia, M. & Olabi, A.-G. Production and Treatment of Porous Glass Materials for Advanced Usage. in Reference Module in Materials Science and Materials Engineering (Elsevier, 2016). doi:10.1016/b978-0-12-803581-8.03999-0
  2. Elmer, T. H. Porous and Reconstructed Glasses. in Engineered Materials Handbook (1992).
  3. Zhu, B. et al. Synthesis and Applications of Porous Glass. J. Shanghai Jiaotong Univ. 24, 681–698 (2019).
  4. Enke, D., Janowski, F. & Schwieger, W. Porous glasses in the 21st century-a short review. Microporous Mesoporous Mater. 60, 19–30 (2003).
  5. Lubda, D., Cabrera, K., Nakanishi, K. & Minakuchi, H. SOL-GEL PRODUCTS NEWS Monolithic HPLC Silica ColumnsJournal of Sol-Gel Science and Technology 23, (2002).
  6. Baino, F., Fiume, E., Miola, M. & Verné, E. Bioactive sol-gel glasses: Processing, properties, and applications. Int. J. Appl. Ceram. Technol. 15, 841–860 (2018).
  7. Hammel, J. J. & Allersma, T. United States Patent | Thermally stable and crush resistant microporous glass catalyst supports and methods of making. 923, 341 (1975).
  8. Du, W. F., Kuraoka, K., Akai, T. & Yazawa, T. Effect of additive ZrO2 on spinodal phase separation and pore distribution of borosilicate glasses. J. Phys. Chem. B 105, 11949–11954 (2001).
  9. Jungbauer, A. Chromatographic media for bioseparation. Journal of Chromatography A 1065, 3–12 (2005).
  10. Sotomayor, P. T. et al. Construction and evaluation of an optical pH sensor based on polyaniline-porous Vycor glass nanocomposite. in Sensors and Actuators, B: Chemical 74, 157–162 (2001).
  11. Takahashi, T., Yanagimoto, Y., Matsuoka, T. & Kai, T. Hydrogenation activity of benzenes on nickel catalysts supported on porous glass prepared from borosilicate glass with small amounts of metal oxides. Microporous Mater. 6, 189–194 (1996).
  12. Gronchi, P., Kaddouri, A., Centola, P. & Del Rosso, R. Synthesis of nickel supported catalysts for hydrogen production by sol-gel method. in Journal of Sol-Gel Science and Technology 26, 843–846 (Springer, 2003).
  13. Using Porous Glass Microspheres for Targeted Drug Delivery Mo-Sci Corporation. Available at: https://mo-sci.com/porous-glass-microsphers-targeted-drug-delivery/. (Accessed: 2nd September 2020)
  14. Rahaman, M. N. et al. Bioactive glass in tissue engineering. Acta Biomater. 7, 2355–2373 (2011).
  15. Fu, Q., Saiz, E. & Tomsia, A. P. Bioinspired strong and highly porous glass scaffolds. Adv. Funct. Mater. 21, 1058–1063 (2011).

Wednesday 8 June 2022

Writing About your Business


Staying in touch with potential and existing customers is important to getting more sales.  This is especially true for websites.  You need to build an online relationship which is similar, but has a different expression, to in-person relationships.  You need develop your online business profile.  Whether you concentrate on craft fairs or wholesale and online sales, you need to communicate about what you do.  Whether you have a website with a shop or just a Facebook page, you need to tell people what you do to build support.

It may seem difficult at first to know what to write about your business that will be interesting to your customers and support sales and be worth the effort.  There are a lot of things you can say about your business.  When you begin to think of the elements for communication with your potential customers there are lots of things you can say that will interest them and give your business a personality and an interesting profile.

But I don’t have a web site.  I sell at craft fairs and to galleries.

This still applies to you.  You need to tell all sorts of people and organisations about your business.  You need to have something for galleries to look at.  You need copy for newspapers and other media.  You need a  statement about you and your business at craft fairs.  You need to use social media to get people to the physical sales points.  You need to think about how these elements can help provide interesting posts.  Of course, not all that is given here is directly applicable to personal interactions, but it will give you the direction you need to present yourself and your business in the best light.

There are lots of ideas to get you to thinking about what you can do to communicate.  What follows are indicators of what you can do. You don’t need to use them all, but employing a range of these elements will give variety and interest to your communications.  It may also, along the line, provide you with a much higher profile and incidentally, sales.  You do need to communicate regularly and consistently with the audience.  An irregular post every month or so, is not enough.  You may have to set a schedule for publishing communications to your followers.

Write -

- About your business

·        What started you in business? what was the inspiration? Talk about any greater purpose than simply making your items. What are your motivations to continue working? What gives you joy?
·        How, and why did you choose the business name? Who did you involve? How does the name continue to be appropriate?
·        Tell people what it is about you and your work that is special or unique.  Indicate what your niche is, make it explicit for your potential customers.
·        How do you do business? Do you take commissions?
·        Share the stories and case studies of your experiences.  For example, take people through the stages of a commission.  Telling about the changes, developments, challenges shows how you work.  Show the results and tell what the client liked most about it. This provides the opportunity to include testimonials.  Include lots of sketches, photos. Importantly, get the commissioner’s permission to share details.  

An example of a site which provides a number of testimonials: http://www.gilroystainedglass.com/gilroy/testimonials/
Another example is this blog which does everything – the way she works, her stories, information, inspirations and there is no obvert selling at all. https://morganica.com/about-me/


- About your Location
·        Tell people where you are located. This helps to increase trust.  Talk about why you chose the area. How does the place affect your work? Provide pictures of your specific location, the area, and elements of landscape or cityscape that interest you.
The Northlands Creative site gives you a sense of place. 

·        Essentially, offer a behind the scenes view of how your location interacts with your creativity.  An inner-city industrial area can be as interesting as the countryside.

An insight to working practice is given in the Bob Letherbarrow website

- About your inspirations

·        Talk about people that have inspired you, role models, influencers. What have you learned from them?
·        What events – personal and world-wide – affect your work? Write and illustrate them.
An artist statement example from Bob Leatherbarrow 
·        Write about the kinds of environment that influence elements of your work.

- About things that interest you
·        Reviews of exhibitions, events, books.
·        Share your passions, reveal your personality, what excites intrigues you about your craft.  Why your glass expression than others? Does your work tell stories? Do you have a bigger purpose in making your craft?
·        Write about what is important to you.  This shares your values, and by writing from different angles will bring more visitors to the site.  Recommending other small businesses with similar values not only creates a business community, but a customer community too.

- About the process

·        Share the creative process involved in your body of work.  It can  be in words or images, short videos. 
·        Show the design process – inspiration, sketches, prototypes, final items and then the results at shows.  Use lots of pictures.

- About useful information

·        Share information and guidance about looking after your products.
·        Give information about related businesses.  These will be services or products that you do not supply but are relevant and are provided by other local businesses.
·        General tips related to your area of business shows you are knowledgeable, helpful and trustworthy.
·        General tips on how to display, use or wear your work grab attention.  Pictures are especially important here. 
·        Write useful communications.  Think about what your ideal clients would find useful to know.  Is there any maintenance needed for your glass? How to clean the glass. Give practical advice and suggestions. 
·        Promote other resources or books you like. Avoid a sales post, just include a link to the relevant page of your site as a sign off.
·        Think about having guest writers.  Getting others to write occasionally for you saves you work.  Interviews are another way to vary the voice of your communications.  It is essential to be clear about what these guests are to focus on, and give them the opportunity to promote their own site.


- About your customers

·        Ask your followers specific questions, get them involved in new developments at an early, planning stage, rather than at the end.  This gets people committed early to your work and without any explicit sales pitch. 
·        You can ask about the barriers people have to buying from you or others.  You can get information about what publications, sources they use, by asking.  This can be done on social media, or via direct emails.
·        Answer clients’ questions quoting their words.  This can increase the visibility of your site by using others’ searches, so leading them and others to your site. 
·        Helpful responses create a trusted business source.


- About developments and news
·        Write about the events you are planning to attend. There needs to be a group of communications leading up to the event.  Lots of advance notice is needed for people to plan a visit.  To give this notice, you can produce a number of  notices: Lead them through your preparations, the development of your collections, background to the work you will be taking, show the packed van and the final show setup.  These six notices will involve potential customers and build their interest in coming to the event.
·        Tell the stories of the event. What happened, your best sellers, star purchasers, meetings with fellow exhibitors all provide interest to your customers. You can include links to your price list or catalogue in these communications.  This is much better than sending a bare list or catalogue.
·        Talk about your product of the week or month - why the design, what inspired it, how did you name it, what’s special about it.   Start with a good photo of the work.  Possibly add something special – free p&p, special price in combination with another item, etc., to attract a purchase.

- About outlets
·        Blog about your retailers and wholesalers.  It cements your relationships with them, by showing your commitment to supporting their business too.   It  provides publicity for your work. Photos of your work in the locations is good customer-assuring publicity.
·        Let other businesses know that you have sent out information about them.  It may get you reciprocal mentions.
·        Working with wholesalers has better results when directed to individuals or single companies.  Preparing introductory material that is relevant to the client and adding the relevant images, lists, catalogue, gets better results than generic approaches.
An example of telling people where your work is available in Steve Immerman's website

Of course you do not need to write about all of these elements all the time. But they form the background to what you write about your business, craft, current work, and to some extent your life.


Writing specific, focused, timely communications

·        Timely communications are important.  When are customers likely to buy? – send out things prior to that time.  Think about the reasons they might buy and include them.  Gift giving times (such as back to school, springtime, valentines, awareness days) are times for focused communications indicating what you have that is relevant to the event or occasion.
·        Send out notices of an upcoming event through all your communications sources in a kind of countdown to the event giving your activities toward the opening of the event or show.
·        Be consistent in the style of the communications.  Short, direct, and focused posts with lots of pictures are most likely to be read.  Handmade Lives says immediately what it is about (unfortunately now ceased). 

News vs. Newsletters
These communications are not newsletters. Who reads newsletters anyway?

All your posts and communications should be simple and direct.  They should be fairly short (unlike this post!) to be sure they are read.

In Summary

How do you put all this together?  This is an example of a blog which does everything – the way she works, her stories, information, inspirations and there is no obvert selling at all. https://morganica.com/about-me/



Writing about your business is more than just the business.  You are the business.  So, it is writing about you and what you do, not just a dry business description.  You have an advantage over big business. You have a personal story to tell.