Wednesday 31 May 2017

Breaks after the Piece is Cool

People sometimes fire a piece only to have it break after it is cool.  They decide to re-fire with additional decoration to conceal the break.  But it breaks again a day after it has cooled.  Their questions centre around thermal shock and annealing. They used the same CoE from different suppliers, so it must be one of these elements that caused the breakage.


Thermal Shock

This is an effect of a too rapid heat change.  This can occur on the way up in temperature or on the way down.  If it occurred on the way up to a fuse, the edges will be rounded.  If it occurred on the way up to a slump the edges may be sharp still, but the pieces will not fit together because the slump occurred before the slump.  It the break occurs on the way down the pieces will be sharp.  The break will be visible when you open the kiln.  More information is here.


If the break occurs after the piece is cool, it is not thermal shock.

If the break occurs some length of time after the piece is cool, it can be an annealing or a compatibility problem.  They are difficult to distinguish apart sometimes.

The annealing break usually crosses through the applied pieces and typically has a hook at each end of the break.  If the piece has significant differences in thicknesses, the break may follow the edge of the thicker pieces for some distance before it crosses it toward an edge. This kind of break makes it difficult to tell from an incompatibility break.

An incompatibility break may occur in the kiln, or it may occur days, months or years later.  Typically, the break or crack will be around the incompatible glass.  The break or crack may follow one edge of the incompatible glass before it jumps to an edge.  The greater the incompatibility, the more likely it is to break apart.  Smaller levels of incompatibility lead to fractures around the incompatible glass pieces, but not complete breaks.

There is more information about the diagnosis of the causes of cracks and breaks here.


Annealing

Another possible cause of delayed breakage is inadequate annealing.  Most guidelines on annealing assume a flat uniform thickness.  The popularity of tack fused elements, means these are inadequate guides on the annealing soak and annealing cool.  Tack fused items generally need double the temperature equalisation soak and half the annealing cool rate. This post gives information on how the annealing needs modification on tack fused items. 


Compatibility

The user indicated all the glass was of the same CoE.  This is not necessarily helpful. 

Coefficient of Linear Expansion (CoE) is measured between 0°C and 300°C. The amount of expansion over this temperature range is measured and averaged. The result is expressed as a fraction of a metre per degree Celsius. CoE90 means that the glass will expand 9 one-thousandths of a millimetre for each degree Celsius.  If this were to hold true for higher temperatures, the movement at 800C would be 7.2mm in length over the starting size.  However, the CoE rises with temperature in glass and is variable in different glasses, so this does not tell us how much the expansion at the annealing point will be.  It is the annealing point expansion rate that is more important.  More information is here.

Compatibility is much more than the rate of expansion of glass at any given temperature.  It involves the balance of the forces caused by viscosity and expansion rates around the annealing point.

Viscosity is probably the most important force in creating compatible glasses. There is information on viscosity here.  To make a range of compatible glass the forces of expansion and viscosity need to be balanced.  Each manufacturer will do this in subtly different ways.  Therefore, not all glass that is claimed by one manufacturer to compatible with another’s will be so. 


All is not lost.  It does not need to be left to chance.

Testing glass from different sources is required, as you can see from the above comments.  It is possible to test the compatibility of glass from different sources in your own kiln.  The test is based on the principle that glass compatible with a base sheet will be compatible with other glasses that are also compatible with that same base sheet.  There are several methods to do this testing, but this is the one I use, based on Shar Moorman’s methods.  

If you are investing considerable effort and expense in a piece which will use glass from different sources or manufacturers, and which is simply labelled CoE90, or CoE96, you need to use these tests before you start putting the glass together.  The more you deviate from one manufacturer’s glass in a piece, the more testing is vital. 

In the past, people found ways of combining glass that was not necessarily compatible, by different layering, various volume relationships, etc.  But the advent of manufacturers’ developing compatible lines of glass eliminated the need to do all that testing and experimenting.  While the fused glass market was small, there were only a few companies producing fusing glass.  When the market increased, the commercial environment led to others developing glass said to be compatible with one or other of the main producers of fusing compatible glass.

If you are buying by CoE you must test what you buy against what you have.

The discussion above shows that even with the best intentions, different manufacturers will have differences that may be small, but can be large enough to destroy your project.  This means that unless you are willing to do the testing, you should stick with one manufacturer of fusing compatible glass. 

Do not get sucked into the belief that CoE tells you anything important about compatibility.



Wednesday 24 May 2017

Sticking Kiln Wash

Sometimes people experience kiln wash sticking to the bottom of their glass. 

You need some understanding of what kiln wash is to know why the wash sticks. It is largely due to the chemical changes in the kaolin at fusing temperatures.

Opalescent glass does tend to pick up kiln wash more easily than transparent, and does it more at higher temperatures. It is the case that at higher temperatures and longer soaks, the kiln wash is more likely to stick to any of the glasses than at lower temperatures and with shorter soaks. This re-enforces the mantra of "low and slow" to avoid problems in kiln forming.

To achieve the same effects at lower temperatures as at higher temperatures, your rate of advance needs to be slower from the slump point to the top temperature.  This additional heat work will achieve the desired effect with a lower temperature.


One kiln wash, Primo, does not contain china clay.  If you use this and it is sticking to the bottom of the glass, you may be firing too high. Try a lower temperature with a longer soak to reduce the kiln wash pickup. 


Wednesday 17 May 2017

Compatibility Tests

These procedures are based on the observation that glasses compatible with the base glass are compatible with each other. This means that you can test opaque colours’ compatibilities with each other by testing each of them on clear strips.

Annealing test

These tests must be combined with an annealing test.  This consists of putting two pieces from the same sheet of glass together - so you know they are compatible - and firing them along with your compatibility test.

Viewing the results of your annealing through the polarised filters shows whether there is stress left in your annealing.  If there is, the compatibility tests are inconlusive as there is no difference in appearance of stress whether from incompatibility or from inadequate annealing.  Once you have the annealing right, you can then interpret the compatibility tests done at the same time.

Strip test






Cut a strip of base glass 75mm/3" wide and as long as convenient for you or your kiln.

Cut clear glass squares of 25mm/1" to separate the colours.

Cut 25mm/1" squares of the colours to be tested.

Start with a clear square at one end of the clear strip and alternate colours and clear along the strip finishing with a clear square.

Place two strips 25mm/1" wide either side of the clear and coloured squares.

Add a stack of two layers of clear to the kiln before firing as a test for adequate annealing. If the annealing is inadequate, then the whole test is invalid.


Test the result with polarising filters. Start with the clear annealing test square. If no stress is apparent, go to the test strip. But if stress is apparent in the annealing test, look to your annealing schedule as something needs to change. Usually the requirement is a combination of a longer soak at the annealing temperature and a slower annealing cool.




To test for compatibility, look carefully for little bits of light in the clear glass surrounding the colour. These are indications of stress – the more light or the bigger the halo, the greater the stress. Really extreme stress appears to be similar to a rainbow, although without the full spectrum.




You can use this test to determine if you annealing is satisfactory for larger pieces. In this case you should use at least 100mm squares. Stack them to the height of your planned project and dam them with fibre board or other refractory materials to prevent spread. Fire to full fuse and anneal. When cool check for stresses.


The tile method looks at compressive factors too.

Cut a 100mm/4" square clear tile

Cut two strips of glass 25mm/1" wide and 100mm/4" long for each test

Cut two rectangles of 25mm by 50mm (1" by 2") of the same glass for the two remaining sides

Cut a square of 50mm/2" for the centre. The glass in the middle is normally the test glass. To be very certain of what has happened you can do the reverse lay up at the same time. You put coloured glass around the outside, but in this case the inside needs to be clear or transparent. At least one element needs to be transparent enough to view the stress patterns, if any. So you could have a clear middle and black exterior, and vice versa.

This test is a more time consuming process and you may wish to use it only for larger projects.

Also look at the use of polarising filters

Charges for Repairs


Repairs always cost more than the owner or artist expects on initial inspection.  The cost is very similar to, or more expensive than, the cost of a new panel if the whole has to be taken apart and renewed.


If it is a repair to part of the window or object, you need to be careful that you do not under price.  The cost elements you need to consider are these at minimum:

  • Glass
  • Materials
  • Time
  • Overheads
  • Travel
  • Installation
  • Contingencies
  • Profit


Glass - and the cost of obtaining it.  Can you obtain the same or very similar glass to the original?  If you can’t, is the client willing to have the repair in different glass?  If you get approval, you need to cost it – whether you already have it or not.  If you do not have it in your stocks, you need to add in the cost of getting it whether that is travel or postal order.  You need to include the time either or both methods involve in the costs.



Materials – The materials you will use in addition to the glass need to be considered.  These include solder, Foil or lead, flux, patina, cleaning materials, etc.


Time - labour and admin. You need to assess how much time it will take to do the repairs.  Then multiply that by your labour rate. You do have one, don’t you?  If not, get down to it and create one. Use steps one and two of this description.   You also need to take into consideration the time to recreate a pattern for the broken area if extensive.


Overheads – If your overheads are not included in your hourly rate, this is the time to include them in the pricing.


Travel = Your mileage rate + time to get there and back.  If you don’t have a mileage rate, look at what your local authority allows.  This will be lower than what businesses allow, but are reasonable, and publicly available.  (At the time of writing the allowance in Scotland is approximately £0.50 per mile.)  It takes time to get to the location, so this needs to be included in the cost too. Of course, if they are willing to bring the item, it reduces the cost to the client.


Installation – If you are expected to install the piece, you need to include travel (there and back at least twice) and time.  You also need to include the estimated time to remove and install a substitute (and its cost) as well as installation of the repaired piece.


Contingencies - All repairs have uncertainties.  You do not always know what the progress of repairing will reveal.  You can agree with the client that any work required in addition to the initial agreement will be notified for the client to decide whether to proceed or not.  However, you can take on the risk. This is what the contingency is for. You need to build allowance for these unforeseen developments.  A 10% to 20% of the total costs addition to the price is sensible if you are taking the risk.


These seven elements added together give you the cost of doing the repairs.  That is the bottom line.  But there is one more element to consider:



Profit – You do expect to get a profit from all this work, don’t you?  If not, why do the repair at all?  You are not a charity.  Of course, you can decide to give away your profit.  Before you do, think about what you have to pay for repairs – to your car, your plumbing, etc.  You deserve some profit on everything you have invested in this craft that you love.  The love will die without profit.

The profit level will depend on your objectives, but will range from 20% (very low) to 100% (what shops charge). If you put your work in a gallery or shop on a sale or return basis, you expect to have to pay at least 30% on the sale.  That should be the minimum basis of your profit level on any repair.



This may all sound like it is too much trouble for a simple repair.  Yes, it does take a bit of consideration to start with.  But once you have established the basic labour, travel, overhead and profit levels, the rest is pretty straight forward.  You will have an idea of how long it takes to do the work, to travel, the glass costs, etc., and the profit level. You only need to multiply by the rates you have established to give you the price.  I should warn you - it will be much higher than you initially thought.

Tuesday 9 May 2017

CMC as a Medium

There is a lot of use of powdered glass in a medium supplied in an applicator bottle.  This is convenient and expensive.  You can approach the consistency of the commercial product by use of CMC

CMC is carbyl methyl cellulose. It is a binder (glue) and it helps keep solids suspended in liquid. You can buy it at a pottery supplier as it is often used in glaze mixtures and known as a glaze binder. It is also used a lot in the food processing industry and is available as food grade CMC.  It normally is supplied in powder form.

To make use of it you need to dissolve a teaspoon or two in a half pint of water and let it stand. It does take a while to wet and in doing so it expands. By the next day it will be a thick mass. It can be further diluted, but it is often best to make it to the consistency you will need for the current purpose.  It will require a little experimentation to get the proportions right for various purposes.  

Put on a dust mask. Sift the powdered glass to remove the coarsest particles and mix the result with the CMC, 1 to 2 of powder or more.  Mix thoroughly and leave to stand overnight. Then dilute to the desired flow if required and mix well. Again let it stand overnight to completely incorporate the powder.  If it is too liquid, it is desirable to add more powder than more CMC to avoid diluting the colour.



Wednesday 3 May 2017

Channels in Jewellery Items

The principle in forming channels in fused glass is to keep the space open with something that will survive the firing and can be easily removed.


You can use kiln washed wire, mandrels, or tooth picks which you can pull out after cooling. These tend to leave a residue of the kiln wash behind. So this is best used on opaque items.

You can use rolled or cut fibre paper, which can be washed out after cooling, leaving a clean hole. This is works well on transparent items.

Both these methods tend to leave bumps over the channel. So you can make a three layer piece. Cut the middle layer short enough to allow the element to keep the hole open (toothpick, cut piece of fibre paper, wire etc.) to be placed with enough overlap of the top layer to catch the bottom layer. In this kind of setup you need to make the top layer a bit longer than the bottom layer. Make sure you are generous in the length of the "hole keeper" so if the glass (now possibly 9mm) does expand you do not trap the material inside.

Of course on a three layer set up like this you could use thin glass which would give you about 6mm of thickness thus eliminating the spread due to volume. In this case you would need to use fibre paper or wire that is about 1.5mm high/thick. It is probably best to have a thin piece of glass on each side of the “hole keeper” to ensure the glass does not retreat due to lack of volume.

You can experiment with a layer of standard and two of thin in various combinations to find the one you like best.

Removing Bubbles

Inclusions and Bubbles

The inclusion of material between two or more sheets of glass has the risk of creating bubbles.  The size of these often relate to the size of the inclusion.  The inclusion can be glass (powders, frits, cut pieces), mica, metals, foils, etc.

The important element in eliminating bubbles is to have a long slow bubble squeeze from the bottom of the forming temperature to the top slumping temperature.  If this is combined with supports at the edges or a fine film of clear powder, it will help reduce the interior bubbles to a minimum.  The supports at the edges may be as small as fine frit (and some use powder over the whole surface).

But, once you have bubbles in the piece, what can you do?

You can drill a hole in the bubbles, or break the bubbles and fuse again, but there will be distortions visible in the resulting piece.

Another method to reduce the effect of bubbles, is to flip the piece and fire upside down to drive the bubbles to the bottom of the piece.  Be careful to use low fusing temperatures to avoid enlarging the bubble.  At the finish, the bubble will still be in the glass but will not be protruding above the top surface.

It may also be possible to combine the two processes.  Drill a small hole in the bubbles and fire upside down.  If you do this you need to place the glass on porous fibre paper, not just Thinfire or Papyrus, to allow the air to be compressed out of the bubbles.  You also need to allow a significant amount of time around the slumping temperature for this to happen.

Once you have fired upside down, you will need to fire polish the surface again. Do not despair at multiple firings.  A lot of people fire their pieces many times to achieve the effects desired.



Wednesday 26 April 2017

Borax solutions

A borax solution can act as a devitrification spray. That is its usual application in kiln forming.  But it can be used in other ways too.

Borax is a flux helping to reduce the firing temperature of glass. So, it can be used as a medium for powdered mica which can be painted or sprayed onto the glass. It also helps reduce the oxidisation of included metals.

Obtain borax that has no additives. Put a couple of teaspoons into water and bring to a simmer. Remove from the heat and cool. Decant the almost clear liquid off the sediment and you have a saturated solution of borax ready to use. 

If you are really parsimonious, you can add water to the crystals remaining in the pot and heat to get another saturated solution. You could do this until there was no residue, but that would get tedious.

Add a couple of drops of washing up liquid to the solution. This is enough to break the solution's surface tension. It helps to give an even distribution of the solution across the clean glass by reducing the beading of the liquid that otherwise occurs.

You can paint the solution onto the material - glass or metal - with a soft brush such as a hake brush, or you can spray it on with a pump spray container.  Be careful to clean the spray container immediately, as borax crystals form quickly.

Make Your Own Stopping Knife

“Stopping knife” is a traditional term for an oyster knife with a weighted end.  This makes it a multi-purpose tool that manipulate glass, dress lead came, act as a fid, act as a putty knife, and become a hammer.  It also stands up on its own.  I find it the single most useful too in leaded glass panel construction.

This note is how to get from here:



To here:





The process relies on the low melting temperature of lead.  This means that you can use stiff paper wrapped around the handle of the knife to contain the molten lead until it cools.

First you set the oyster knife into a vice and cut two dovetail joints at right angles to each other into the end of the wood handle.  This will insure the lead is firmly grasped by the wood and will not come loose during use.


I do this with a fine bladed saw such as a hacksaw, coping saw or even a dovetail saw.  There are Japanese saws that work very well too, but are not so widely available.

The top of the dovetail joint should be just a millimetre or two off centre. 


The angle should be about 30 degrees from vertical.  Saw down far enough to get a 6mm chisel into the space between the two angled cuts.


Chisel out the wood between the cuts.


Repeat for the second dovetail at right angles to the first.



Now you are ready to prepare the oyster knife to become the stopping knife.

Use paper of more than 90 grams per square metre, such as cartridge paper to form the narrow cone.  Set the knife at a slight angle on the paper. 



Secure the beginning edge to the knife handle with a bit of masking tape.  Mark the paper 5 mm – 10 mm above the top of the handle.  This will be the fill indicator when pouring the lead.  If you over-fill the cone, the stopping knife will be heavy and uncomfortable to use.


Roll the paper around the handle to form the cone.  This cone should be as close to vertical as possible.  A wide based cone will, of course, provide stability, but it will add so much weight as to be uncomfortable to use.  It will also be so wide as be uncomfortable for the palm of your hand.


You can unwrap the paper and start over if the cone becomes too wide.  The key is to start the wrapping just before the handle begins to taper toward the end of the handle.  The other way of looking at it is to attach the paper just as the expanding taper stops.



Try to keep the paper cone as smooth as possible.  This will form the shape of the lead end of the handle.  You want it to be as circular as possible without dents or angles.




Now you are ready for the casting.

I use a small old cast iron pot to melt the lead.  I place this over a camping gas burner to provide the heat.  I promise that I did straighten the stabilising legs before lighting the camping burner.




Put some old lead came into the pot to be melted.  While this is coming up to heat, place your wrapped oyster knife in a vice with heat resisting materials around the site to catch any spills.




Put sufficient lead into the pot, as there will be impurities floating on top and the lead will cool quickly when taken off the heat.  The photo below shows the amount of lead used.  This 100mm diameter pot has lead barely covering the bottom.  You do need enough lead to complete the pour at one go, as a second pouring will not stick to the first adequately.

The photo shows the last piece of came just about to be melted.  This is the time to begin the pour.  If the lead is too hot, it burns the wood creating gases and multiple bubbles splashing hot lead and leaving an unpleasant surface for the tool.  As the last piece of the came melts and leaves its impression as the piece on the left, it is time to pour.




Pour at a steady rate into the paper cone until you reach the height indicator you previously marked in the paper.  When you stop pouring, set the pot on a heat proof surface.  You will notice some smoke and browning of the paper.  That is normal.  This picture shows the effect of the hot lead on the paper once the smoking has finished.





This photo shows the inside of the cone while cooling.  The cooling process will take about an hour.  You will be able to check, by touching the paper, how hot the whole is. 



When the whole is cool, you can unwrap the paper from the handle.





This shows the roughness of the handle end.  This is due to the bubbling from the scorching of the wood and paper.

When the paper is removed and the lead is fully at room temperature you can use a rough file to remove the bubbling and to round the edge of the lead.



The oyster knife has been transformed into a stopping knife and is ready to use.





Wednesday 19 April 2017

Light and Dark in Designs

Chiaroscuro – This word borrowed from Italian ("light and shade" or "dark") refers to the modelling of volume by boldly contrasting light and shade. 

Glass artists need to be very cognisant of light and dark, both in terms of colour selection and in terms of density. A very thick dense glass of a dark shade of any colour will create a much more intense darkness than glass that is thinner and less dense.


In terms of colour, lighter hues go where the sun shines or where the eye is to be drawn. Pastel shades indicate brightness and light. Within some opalescent and art glasses it is possible to find a shade of colour graduating to white or light yellow. 


Shading can be achieved by using the white areas to indicate where light is falling. A denser dark glass can be used to indicate where light does not fall, or where very little light can filter through. It can also play the part of negative space.



Sometimes, it is useful to use a monochrome scheme to assist in determining where the light and dark should be, as in this pear:


The contrast between light and dark can be used in several ways. Darkness can indicate depth of field or distance when used in a general landscape. Or, it can be used to bring a foreground out, making other elements more vivid.


The key thing to remember in using stained glass is to not be afraid of dark glasses. They can very useful, even if of very odd hues of colour.

Wednesday 12 April 2017

Firing wire inclusions

Wire and other metal inclusions often cause bubbles to occur around them.  The standard solutions are to add frit to the corners, or powder or fine frit around the inclusions.   You can also flatten the wire or metal to reduce it height. These most often work well.  Sometimes though they don’t eliminate big bubbles around the metals.





In this case think about firing upside down. This is not the whole piece; it is only the inclusion and the bottom layer of glass.  Place the wire or other inclusion on the prepared shelf. It will be most successful if placed on 1mm or thicker fibre paper to allow any trapped air to escape through the fibre.  Place the base glass on top and take to a tack fuse with a bubble squeeze included.  You might even want to consider cutting the base larger than the final piece to be able to cut off the thickened edges and make a more successful piece at the end.




After tack fusing upside down, the inclusion will be imbedded in the glass with an almost flat surface and little in the way of air pockets at the edges.  Clean very well, especially any spalling from the metal and of course, clean the glass thoroughly.  Cap and fuse with a bubble squeeze again.  The bubbles around the inclusion should be minimal if not eliminated.


This method will allow the glass to sink around the glass making a much flatter piece for the capped full fuse. It should also make for a flatter finished piece with many fewer bubbles.



Wednesday 5 April 2017

Large Bowed Pieces

Occasionally, large pieces in the kiln develop a bow at the end of firing.  The most obvious is when the bow is upwards, but it also occurs that the piece is domed.  This is much more likely to be observed when there are complete sheets, rather than ones interrupted with other design elements which break up the whole sheet.

This is a result of a slight mismatch of compatibility.  One glass is expanding and contracting slightly more than the other.  The bow is always toward the glass which expands the most.  When it contracts, it also contracts more than the other glass, drawing the sheet with lower expansion toward it to form a bow.

This is a form of mild stress.  It can sometimes be seen in large sheets of streaky or flashed glass which are not completely flat.

It is not a fatal flaw.  A piece of this nature can survive many years in that state.  I once had a large window to repaint, because of a football impact.  When re-assembled, it showed that it had been bowed from the outset, almost 90 years before.  It is not in a suitable state for wall pieces or other things that need to be flat, of course.

Remedies


The remedies most often relate to reducing the stress in the piece.

This of course, relates to the firing schedule.  Increasing the length of the soak at the annealing point is one method.  This combined with reducing the rate of cooling can be effective.

Another method can be employed also.  This is to soak the glass just above the upper strain point of the glass.  This soak should be equal to the one planned for the anneal.  The upper strain point temperature – that point above which no annealing can occur -  is about 40C above the annealing point.  Thus, this soak should occur about 55C above the annealing point of the glass concerned.  Then proceed at a moderate pace to the annealing point.  This rate may be the same as the second stage of the anneal cool (as a starting point). Then anneal as usual for the thickness of the piece.  This method can, of course, be combined with the extended soak and reduced cooling rate as first suggested.

A third method can be employed, if the first two do not work.  This assumes one of the sheets of glass is clear.  Place a sheet of clear on the opposite side of the piece to form a glass sandwich with the two pieces of clear.  Then fire as for a three-layer piece of glass.  The assumption behind this is the same as for toughened glass.  The outer layers will hold the inner layer in compression.  But more importantly, will equalise the slight stress, allowing the piece to remain flat when the firing is completed. This can be used with any transparent glass, but the colour change may not be acceptable.

A fourth method is possible.  Turn the fired piece over and fire, to allow the weight of the glass to overcome the tension of the contraction of the more expansive glass.  This can be successful, but it does retain the stress within the resulting piece.  As such it is not a remedy for the stress, but is a way of flattening.

Placement

The place of the glass in the kiln can have an effect too.  If the sheet is near the side of the kiln, there can be a stress inducing effect.  All kilns are a bit cooler at the perimeter than at the interior.  This applies to circular, oval and rectangular kilns.  Rectangular kilns have additional cool spots at the corners.  If the glass is near the capacity of the kiln, the cooler corners can induce this bowing stress to otherwise compatible glass.  The thing to do is to stay about 50mm away from the edges of the kiln when firing large sheets into one piece.

Testing

The ideal is to know before firing the large piece whether there will be a problem to overcome. This requires a simple test of the glass to be used.

Assuming the final piece is to be two layers thick of different glass colours, cut a strip of each colour about 50mm wide and as long as the final piece.  Assemble them in the same order as you plan for the final piece.

Add an annealing test square of the two glasses stacked on top of one another.  If one is opalescent and the other is transparent. Make the transparent larger than the other.  If both are opalescent, you will need to run a compatibility test at the same time as this test.  In simple terms, it is to put each of the opalescents on a strip of clear or transparent with the gaps between the opals filled with the transparent.  This test will tell you whether you have fired so fast as to induce stress and so invalidate the test.

Fire as though for a 50mm piece of jewellery – about 200C to bubble squeeze - but without a soak - and then at 400C to top temperature.  Cool to annealing temperature for 15 minutes and cool at 120C per hour to 370C and turn off.


If the long strip is bowed, and the anneal test piece shows no stress, there is enough compatibility mismatch to require the use of one of the remedy methods outlined above for the main piece. It may of course, cause a reconsideration of the glasses to be used or the size of the piece.