Showing posts with label kiln venting. Show all posts
Showing posts with label kiln venting. Show all posts

Wednesday 7 June 2023

Effect of Air Space Around Shelves

The Bullseye research on annealing thick slabs indicates that it is important to have a 50mm space between the shelf and the kiln walls. This is to assist even distribution of the air temperature above and below the shelf.

I decided to learn what the temperature differences are between ventilated and unventilated floors of kilns. The recording of the temperatures was conducted using pyrometers on the floor of the kiln and in the air above the kiln shelf. The pyrometer above the shelf was at the height of the kiln’s pyrometer. The recording was done during normal firings of glass. The graph below shows temperature differences during a typical firing.


The blue line indicates the air temperature, the orange line the floor temperature and the grey line the difference in the two over the whole firing. Each horizontal line is 100C


The next graphs show in more detail the differences between having no significant space and another firing with space between shelf and kiln walls.



Horizontal axis legend:

  1.  = 300°C
  2.  = Softening point
  3.  = Top of Bubble Squeeze
  4.  = Top temperature
  5.  = Start of anneal soak
  6.  = start of first cool
  7.  = start of second cool
  8.  = start of final cool
  9.  = 300°C
  10.  = 200°C
  11.  = 100°C
  12.  = 40°C

The general results are that there is a greater difference during the rise in temperature and a reducing difference in floor and air temperature during the anneal cool. However, there are significant differentials at various points during the firings.

Space between the shelf and kiln walls:

  • Smaller temperature difference is experienced on the heat up.
  • Floor stays hotter than the above shelf air temperature during the anneal soak.
  • This difference gradually equalises during the anneal cool

Without space between the shelf and kiln walls:

  • Significantly greater difference on heat up is experienced – over 100°C cooler than ventilated floor area.
  • Floor temperature is less than air until the final cool.
  • During the anneal soak the floor temperature difference becomes larger than at start of anneal. This seems to be the consequence of heat continuing to dissipate through the kiln body, while the air temperature above the shelf is maintained at a constant temperature.
  • The difference between the air and floor temperature gradually reduces during the anneal cool as the whole kiln and its contents near the natural cooling rate of the kiln.

 

This appears to indicate that space between the shelf and kiln walls helps to equalise the temperature during the critical anneal soak and first stage of the anneal cool. This will be particularly important when annealing thick slabs.

These tests were done in a kiln of 50cm square. It is likely that the differences would be greater in a large kiln, making it more important to have the air gap between shelf and kiln wall. Smaller kilns and thinner glass seem to be less affected by these differences.

Note that the air temperature and shelf temperature differences in these firings maintain the same character whether the floor has good circulation or not. The shelf temperature lags behind the air temperature throughout the heat up.

The fact is that floor and air temperatures are nearer each other with air space around the shelf. The difference reduces during the bubble squeeze and the top temperature soak. The difference in temperature on cool down is small. During the anneal soak and cool, the shelf tends to be a few degrees hotter than the air temperature.

There was no difference in the amount of stress in the glass in these tests on a small kiln whether there was a gap or not between the shelf and the kiln walls.

Implications for kilns with multiple shelves

Those using multiple shelves in a single firing load should take note of the implications from this. It is important to have significant ventilation between layers to get consistent results from firings.

The ideal would be to have larger than 50mm/2” gap around the upper shelf. Possibly 100mm/4” would be a good starting point. This would allow sufficient heat circulation to compensate a little for the lack of radiant heat from the elements.

If you have a really deep kiln and are using three shelves, the ideal would be to start with a 50mm/2” gap around the bottom shelf. Then a 100mm/4” gap around the middle shelf and finally a 150mm/6” gap around the top shelf. This will assist the heat to circulate to the bottom layer.

 

There are greater differences in temperature between the floor and above shelf air temperature when there is no ventilation space around the shelf. This is especially the case during the anneal soak.

Wednesday 4 November 2020

When to Open a Cooling Kiln

Credit: Glass House Store

Questions about when it is possible to open the kiln during the cool down to avoid thermal shock get the answer, “it depends….”

These dependent variables include:

Temperature Differentials
Thermal shock is related to how quickly a piece can cool without developing stress that cannot be contained within the piece.  So, when the temperature differential is a few tens of degrees between room and kiln air temperature it is less risky than when the difference is hundreds of degrees.

This means that there is a relation between room temperature and when you can open the kiln safely.  If the room is at sub-zero temperatures, you will need to wait for a lower temperature in the kiln, so the temperature differentials are no greater than when the room is warm.  Remember the glass can be much hotter than the air that the thermocouple measures.

Cooling rate of the kiln
The natural cooling rate of the kiln (that is, in the unpowered state) will affect when you open.  If your kiln cools very slowly from 150°C, you may feel confident to open the kiln a little to speed the cooling from that temperature.  If you kiln cools quickly - usually in smaller kilns - then you need to wait longer for a lower temperature to be achieved.

Size of the piece
The size of the piece(s) relative to the kiln size has a bearing on when it is safe to open the kiln to speed cooling.  The more space the piece takes up in the kiln the cooler the temperature reading needs to be before you open the kiln.

Placing
The placing of the glass has an affect too.  If the glass is at the front of a front opening or top hat kiln, it will cool more quickly and unevenly than one at the back. A large piece placed more to one edge than another will also require lower temperatures before opening.

Thickness
The thickness of the glass also needs consideration.  The thicker the glass, the hotter it will be in relation to the measured air temperature, and so the longer it needs to be left to cool before opening.

Type of kiln
Your kiln may cool slowly or quickly, but the style of the kiln is important too.  The kiln may be brick lined or fibre lined, or a combination.  The greater the mass of the insulation, the earlier you can open, as the dense brick will radiate heat back toward the glass.

If you have a top hat kiln it is probable that you can open earlier than if you have a top opening or front door opening kiln, as they will dump hot air slower than top and front opening kilns.

The venting method
The way you open the kiln to increase the cooling rate is important.  If you open vents, that provides a gentler flow of cooler air than opening the lid or door.  If you open lids or doors, you need to wait for a lower temperature than for opening vents.

And I am sure there are other considerations.  But these are enough to show that there is not a single answer.  The answer is in relation to the kiln and its contents.

Acceptable Cooling Rates

The speed of cooling that a glass can sustain is indicated by charts giving the rate of cooling for the final rate of decrease to room temperature.  Faster rates might be induced by turning the kiln off at 370°C and opening the door/lid at some slightly lower temperature.

This means that you need to know how fast a cooling rate is acceptable.  The bullseye research suggests that 300°C per hour for the final cooling is as fast as you would want to cool a 12mm thick piece.  This is in a closed environment.  Therefore, you will want to be slower – at least half the speed for a partially opened kiln of say 5cm. 

My predictions for acceptable cooling rates are (with a room temperature of 20°C; a piece evenly thick and 30cm square, but less than half the area of the kiln floor; and a top hat kiln):

6mm -   300°C per hour (although I never use more than 200°C per hour)
12mm - 150°C per hour
19mm - 75°C per hour
25mm – 45°C per hour

Note: Tack fused items with these total heights need to have these rates halved, or use the rate suitable for a piece twice the thickest part.


But!

You cannot open the kiln until the natural cooling rate is at the predicted acceptable rate of cooling or less, to be safe.

The natural cooling rate at various temperatures can be determined by observing temperature falls in relation to time intervals between those observations.  You can make a chart to indicate the cooling rate at different temperatures.  The kiln will naturally cool more slowly at lower temperatures. 


Schedule to room temperature

A protection against too rapid cooling is programming to room temperature.  If your kiln is cooling less rapidly than you predict is acceptable, you are using no electricity – OK, maybe a tiny fraction of a kilowatt to keep the controller operating. But there is no worry of using excess electricity.

The point of programming to room temperature is that if the air temperature in the kiln cools faster than predicted, the controller will turn the kiln on.  You will need to be present for a while after venting the kiln to hear if it turns on and you can lower the lid to a point where the kiln does not turn on, indicating the rate of cooling is less than put into the schedule.

An example:
Assume you predict that 150°C per hour is the appropriate rate of cooling from 370°C. Also assume you open the kiln at 100°C and a minute or so later you hear the kiln start.  Then you know that you have opened the kiln too far causing a more rapid cooling than 150°C per hour and you need to close the opening to less than the current state.  This probably will be a progressive thing.  You will come back, say, half an hour later and open a little more.  Everything seems fine, but 10 minutes later you hear the kiln switch on again.  Oops! You opened too much – you need to close the kiln a little.  This may repeat several times.

The real answer to when you can open your cooling kiln is dependent on many variables.  You will have to decide on how critical these are in relation to the piece(s) you have in the kiln.  Once you have decided on the appropriate rate, you should program that into your schedule for the final segment.  This means when you partially or fully open the kiln the controller will switch the kiln on when the cooling rate is faster than you wanted.

Wednesday 17 April 2019

Firing Practices that Affect Kiln Elements

The way that you fire glass and other materials in your kiln affect the longevity of the kiln elements.  Some things you can do and avoid are given here.

Venting

Even if you have the best aluminium oxide coating, the fumes that emit from glazes, paints, organics, inclusions and devitrification solutions can still attack the element through cracks in the coating. Downdraft vents are your best defence against potentially harmful fumes. Downdraft vents pull the fumes from the kiln chamber before they have a chance to damage the elements.
If you do not have a downdraft vent your next best option is to prop the lid a couple of inches until the kiln reaches 540°C to allow the fumes out of the chamber. You should also consider leaving at least one peephole out during the entire firing for the fumes that escape above 540°C.
This presents a dilemma, as the recommendation is to keep the kiln closed from 540°C upwards to protect the glass from cold air drafts.   Those who rarely fire above 800°C do not have the same problem as those who regularly fire at 850°C and above for casting, combing, and melts.  The higher the temperature, the greater the effect of fumes on the elements.  At fusing and below temperatures the effect on the elements is not as great.  Thus, low temperature firings can follow the standard practice of closing the kiln above 540°C.  Those going higher, should consider venting the kiln all the way to the top temperature to reduce the wear on the elements.

Maintain an Oxidising Atmosphere

Elements need an oxidising atmosphere to provide a long dependable service.  Subjecting elements to reducing atmospheres will age the elements quickly.  This is be done by introducing organics or oils into the kiln without venting.  Among the things that will attack the aluminium oxide coating of the elements are
  • ·        Carbon - this includes materials made from carbon and plant-based inclusions.   
  • ·        wax burnout – it is best to steam wax out of moulds to eliminate most of the wax before any burnout, as the fumes are largely carbon.
  • ·        halogens (such as chlorine or fluorine) 
  • ·        molten metals (such as zinc, aluminium).  This is a more important reason for avoiding the use of zinc and aluminium in kilnforming than the possibility of health problems.
  • ·        lead bearing paints and glazes – lead is a common component of paints, enamels and glazes.
  • ·        alkaline metals – the main one we come across in kilnforming is magnesium which produces an amethyst colour of varying intensities.  This has a melting point of 650°C and boils at 1090°C, so some fumes can develop during firings and affect the elements.
  • ·        borax compounds – used in enamel glazes and some devitrification sprays. 


If you use these materials in the kiln, you need to ensure that the kiln is well vented while these are in the kiln.

When you do have to use these elements - even when you vent - it is good practice to follow this firing by one without materials corrosive to the coating.  This allows the coating to re-form around the element surfaces after a corrosive firing.
Trying to do reduction firings in your kiln will greatly limit their useful life and is definitely not recommended.


Avoid Contaminants

Contaminants such as silica which is contained in kiln wash and some glazes attack the aluminium oxide coating of the wire.
Powders, paints and kiln wash accidentally touching the elements cause rapid corrosion of the elements if not cleaned off before firing.


Placing

Firing close to the elements allows any fumes from materials being used to affect the elements more than allowing some space between the glass and the elements.  This provides another reason to keep the glass away from the edges of the kiln in addition to the possible uneven heating of the glass.


High Temperature Firings

High temperatures with very long soak times will accelerate an increase in element resistance through the differential expansion of the inner wire and the coating. The higher the temperature, the longer the soak, the sooner the element will decrease in life. Usually short soaks work much better for the longevity of the element.  This is not such a big factor for glass kilns as it is for ceramic kilns.

The next part in this series deals with the maintenance of the elements.


Earlier relevant posts
Element Description