Showing posts with label Observation. Show all posts
Showing posts with label Observation. Show all posts

Wednesday 6 March 2024

Slumping Strategy

A schedule was presented for a slumping problem of a 6mm/0.25” blank.  It consisted of three segments each of a rate of 277C/500F with short holds up to 399C/750F and then a rapid rise to 745C/1375F.  The cool was done with two long holds at 537C/1000F and 482C/900F followed by cooling rates for 12mm/0.5”



My response was that, yes it was fired too high.  Not only that, but the firing strategy, as shown by the schedule, is odd. 

Strategy

The general strategy for slumping follows these ideas.

·        Glass is slow to absorb heat, and in one sense, this schedule accepts that by having short soaks at intervals.  As glass is slow to absorb heat, it is necessary to use slow ramp rates and without pauses and changes in rates.  This should be applied all the way to the slumping temperature.

·        Holds of short durations are not effective at any stage in a slumping firing.  The objective is to allow the glass time to form to the mould with as little marking as possible.  This implies slow rates to low temperatures with significant holds at appropriate stages.  This about putting enough heat work into the glass that higher temperatures are not needed.

·        This kind of firing requires observation for new moulds and new arrangements of glass to ensure the slump is complete.  Once you know the mould requirements and are repeating the layup of the glass, the firing records will tell you what rates and times to use to get a complete slump with minimum marking.

·        The hold at annealing temperature is to equalise the temperature throughout the glass to produce a stress-free result.  Any soaks above are negated or repeated by the necessary soak at the annealing temperature.  The hold there must be long enough to complete the temperature equalisation that is the annealing.

·        My work has shown that annealing for one (3mm/0.125”) layer thicker produces a piece with less stress.  This indicates that a 6mm/0.25” piece should be annealed as for 9mm/0.35” to get the best result.

The summary of the firing strategy for slumping is:

  • ·        A single ramp of a slow rate to the slumping temperature.
  • ·        Observation of the progress of the slump to determine the lowest practical temperature and hold time.
  • ·        Annealing for one layer thicker that being slumped.
  • ·        Three stage cooling of the piece at rates related to the annealing hold.

Critique

This is a critique of the schedule. For comparison, my schedule for a full fused 6mm blank would be different.

  • ·        140ºC/250ºF to 677º/1250ºF for 30 to 45 minutes.
  • ·        9999 to 482ºC/900ºF for 1.5 hours
  • ·        69ºC/124ºF to 427ºC/800ºF, no hold
  • ·        125ºC/225ºF to 371ºC/700ºF, no hold
  • ·        330ºC/600ºF to room temperature, off.

The rate of the published schedule is fast for a full fused blank and extremely fast for a tack fused blank. This needs to be slowed.  The schedule provides a single (fast) rate of heating, but with unnecessary holds.  The holds are so short as to be ineffective, anyway. There is no need for the holds on the way up to the slumping temperature.  In general slumping schedules are of fewer segments.   This is because glass behaves well with steady slow inputs of heat.

Then strangely, the schedule increases the rate to top temperature.  It does so with a brief soak at 593ºC/1100ºF.  This fast rate of 333ºC/ 600ºF begins at 400ºC/750ºF.  This is still in the brittle phase of the glass and risks breaking the glass.  The brittle stage ends around 540ºC/ 1005ºF.

This rapid rate softens the surface and edges of the glass without allowing time for the underside to catch up.  This explains uneven edges.  It also risks breaking the glass from too great expansion of the top before the bottom.

Additionally, the schedule uses a temperature more than 55ºC/100ºF above what is a reasonable highest slumping temperature.  The top temperature of this schedule is in the tack fusing range.

There is no need for a hold 55ºC/100ºF above annealing soak. It is the annealing soak that equalises the temperature before the cool begins.  The higher temperature equalisation is negated by the cooler soak at annealing temperature. So, the hold at the higher temperature and slow cool to the annealing temperature only delays the firing by about two hours.  It does not have any effect on the final piece.

The schedule is cooling for a piece of 12mm/0.5”.  This is slower than necessary.  As noted above, cooling for one layer thicker than the piece is advisable to get the most stress free result.  The annealing soak could be 1.5 hours following this idea.  Cooling with a three stage schedule reduces the risk of inducing temporary stresses that might break the glass.  Although the initial cooling rate I recommend is very similar to this schedule, it safely reduces the total cooling time.

  • ·        69ºC/124ºF to 427ºC/800ºF, no hold
  • ·        125ºC/225ºF to 371ºC/700ºF, no hold
  • ·        330ºC/600ºF to room temperature, off.

Using my kind of schedule for the first time will require peeking once top temperature is reached to determine when the slump is complete. It may take as much as an hour. Be prepared to either extend the hold, or to skip to the next segment if complete earlier. The controller manual will explain how.

 More information is given in Low Temperature Kilnforming, An Evidence-based guide to scheduling.  Available from Etsy and Bullseye


Wednesday 3 May 2023

Texture Moulds

 Texture moulds are a form of bas relief in reverse. The texture of the mould is the bas relief. The glass formed over the shapes is in negative relief. The light is refracted through th
e back to give an image of bas relief although the surface is smooth.

 

Example of wave form texture mould

 These moulds are prone to produce bubbles at the generally recommended tack fuse temperatures. The glass often sticks to the mould if there is not sufficient draft to the parts of the image, or if insufficient separator is used. Often the moulds are produced with a rim around the edges, which trap the glass.

 The usual temperatures are too high. These moulds are an exercise in patience. The temptation is to fire higher than slumping temperatures to get good definition in the glass. However, a number of problems, especially bubbles, can be avoided by staying at the high end of slumping temperatures. This means the top temperature would be about 680C. To compensate for this low temperature, the soak needs to be three hours or more. To be sure the definition desired has been achieved, peeking near the end of this long soak is necessary. 

 Moulds that are produced with a rim around the edges can trap air and create bubbles. The rim forms a perimeter dam to confine the glass. If the rate of rise is quick to a high temperature, the edges can be sealed against the rim before all the air has escaped. It is advisable to cut the glass for these rimmed moulds a bit smaller than the internal dimensions formed by the rim.

 

Example of textured area surrounded by a rim

 Use of single layers on texture moulds can lead to large, thin bubbles. This is most prevalent when using high temperatures. Since the single layers tend to form more slowly than an already fused two-layer piece, the temptation is to use higher temperatures. The higher temperatures soften the glass to such an extent that often bubbles form over the lower areas of the mould. Instead, low temperatures with extremely long soaks should be used to allow the glass to conform to the undulations of the texture without dog boning or developing bubbles. Of course, peeking will be required to determine when the texture is achieved. With single layers, the surface will have greater undulations than with two layers. The thinness of the single layer cannot fill the depression the way two layers can.

 


 Rapid rates to high temperatures can produce internal bubbles too. These moulds have a multiplicity of hollows and depressions. Just as people are warned about depressions in their shelves, the depressions in the texture moulds can cause bubbles too. This means there are even more possibilities for bubble creation than on apparently flat shelves. Long slow bubble squeezes are required to allow air from under the glass.

 Glass sometimes sticks to the mould. This is most often blamed on insufficient separator. Boron nitride is a good separator for these moulds especially if you go to tack fusing temperatures. At slumping temperatures, kiln wash will normally be sufficient. Both of these separators need to be applied carefully, as there are relatively steep slopes throughout the mould. Spraying needs to be done from at least four angles to ensure all the sides are covered.

 Painting on kiln wash is a little more difficult, as the solution is so liquid, it tends to run down the slopes without much sticking. One means of rectifying this is to tip the mould in a circular motion to move the still liquid kiln wash solution around the slopes.

 Less often thought about is the draft of the shapes of the mould. If the slopes (draft) in the mould are too steep, the glass will “grab” the ceramic mould, because the ceramic contracts less than the glass when cooling. If shapes of the mould are steep and deep enough, the glass may even break as a result of this compression of the mould.

 

An example of some nearly vertical elements and a rim

 Of course, if a flat front surface is required, a higher than slumping temperature must be used. This is required to allow the glass to flow to the lower portions of the mould. It still should be as low as possible, but with very long soaks.

 Avoidance of bubbles on, and sticking to, texture moulds is best achieved by avoiding high temperatures, use long soaks, use two layers, and avoid extending glass to the rim. These combined with observation of the progress of the firing will produce the best results.

 

Other information is available:

Low Temperature Kilnforming, an Evidence-Based Approach to Scheduling, an ebook

Bas relief

Layups promoting bubbles


 

Wednesday 18 January 2023

Problems when Slumping

A range of problems appear in slumping.  These include bubbles, splits, puddling and more. Several causes are possible.  This blog looks at the problems, possible causes and remedies.

Bubbles




Blocked Vent Holes

 Absence of, or blocked holes at the bottom of the mould to allow air out into the kiln on all but shallow or cylindrical moulds can be a cause of bubbles. Prop the mould up on stilts if the hole does not go directly from under the glass and out of the side of the mould. Alternatively, drill a hole in the side to allow the air to escape from under the mould.

Wet moulds

In kiln forming, the moisture resulting from recently applied kiln wash is considered by some to be a cause of bubbles. The water in the mould will be evaporated by around 250°C/482°F in any sensible slumping schedule. At this temperature, the glass will not have begun to move, so the moisture can move out of the mould through any vent holes at the bottom of the mould, or past the glass as it rests on the edge of the mould.

The circumstance when a damp slumping mould could cause difficulties is when using an extremely fast rise of temperature. This is detrimental to the mould also, as the rapid formation of steam is more likely to break the mould rather than the glass. It is also unlikely to result in a good slump conforming to the mould without significant marking.

In casting with wet plaster/silica moulds water vapour can move toward the glass. Casting practice has alleviated some of the problem, by having an extended steam out before 200°C/395°F, or pouring the glass into the hot dry mould from a reservoir.

In pate de verre, the mould is most often packed while wet. The small particles normally allow any steaming of moisture to pass through, and so be dry at forming temperatures without blowing any bubbles.

Top Temperature

Bubbles at the bottom of the glass are much more likely to be the result of too high a process temperature if the previous two conditions are met. This high temperature allows the glass to slide down the mould.  The glass is not plastic enough to thicken and form a puddle at the bottom at most slumping temperatures. Instead, it begins to be pushed up from the lowest point due to the weight of the glass sliding down the sides.

 

Avoiding uprisings on the bottom of bowls.

Vent Holes

Make sure the holes are clear before placing the glass.

Wet Moulds

Ensure that the moulds are no more than damp before placing in the kiln.

Top Temperature

Firing for too long or at too high a temperature will cause the glass to continue sliding down. Having nowhere else to go, the bottom begins rising. This is the result of the weight of glass pressing down onto the bottom, especially on steep-sided moulds. This is a consistent experience across several kilns and with multiple users.

Low Slumping Temperatures.

Glass at low temperatures is affected largely by its weight and viscosity.

Viscosity Effects

Thick glass will fall more slowly than thin, when using the same schedule. Thick glass takes longer to equalise the upper and lower surface temperatures. Since the lower surface is stiffer (has a higher viscosity) it will move less using the same heat up rate. This means slower rates should be used, or a significant soak just above the strain point will be required. This softening of the glass evenly throughout the rise to the top temperature is critical in obtaining even slumps.



Splits in slumps

Without the slow progress to top temperature there can be problems. Sometimes the upper surface of the slump appears fine. It is the bottom that exhibits a split or tear that does not go all the way to the upper surface of the glass. It indicates the rate of advance was too - but only just - too fast to achieve the desired result.

 The ramp rate has been quick enough to get the top heated and become plastic. But the lower surface is still cold enough that it is brittle. The weight of the upper softened glass begins to push down before the bottom has become hot enough to be fully plastic. The force of the weight on the bottom can be enough to cause the glass to separate, rather than move as the surface does. This split on the bottom but not the top indicates a slower rate for that thickness is required. This shows the interaction between viscosity and weight.

 Sometimes the split is evident from the top. The cause of this kind of split is the same as a split on the bottom. But the ramp rate has been much faster in relation to the thickness or profile of the piece.



Weight

It is possible to have glass slightly overhang slumping moulds if you use low temperatures. The glass has the appearance of behaving differently at these low temperatures than at fusing temperatures.  

 

At low temperatures it cannot form exactly to the mould. It falls first in the middle. Because the glass is not very plastic, the edges rise up from the mould at first, because the weight there is not great enough to allow the unsupported glass to bend. The edges stay in line with the beginning of the bend in the middle.  

 

At the beginning of the slump the glass is not soft enough to stretch. It maintains its dimensions as it falls. For deep moulds, the glass moves progressively to move over the lip of the mould and begins to fall into the mould.



As the slump proceeds, the glass stretches very little and so the edges move further down the mould. The glass continues to slide down at the edges until the centre settles down onto the mould bottom. 



During this slide into place, the glass can become marked. This is usually most evident on back of the upper portions of the glass where most sliding is happening.

 With higher than necessary temperatures, the glass can continue to slide down the mould. Since the glass is still not fully plastic, the weight pushes the glass at the bottom upwards. This gives the appearance of a bubble, but is an uprising due to the pressure of the glass at the sides of the mould.

 


During the sliding of the glass along the mould, it becomes more marked. The marks often look like stretch marks. And in many senses, it is exactly that.

At higher temperatures or longer holds, the glass softens more. At this point the uprising collapses and the glass begins to thicken at the bottom. It also thins slightly at the top.


Remedies

Ramp Rates

The ramp rates should be slow.

  • ·        This allows the glass to heat evenly throughout. This is important to get even slumps. 
  •          Contrasting colours or a combination of opalescent and transparent glasses heat evenly with slow rates.
  • ·        Slow rates allow glass with tack profiles to heat evenly.
  • ·        It helps avoid splits in the bottom of slumped glass.
  • ·        It allows lower slump temperature to be used.

Low Temperatures

Using the lowest practical slumping temperature gives the best results.

  • ·        It allows glass with small overhangs of the mould to be successfully slumped.
  • ·        Low temperature reduces the mould marks on the back of the glass.
  • ·        Fewer stretch marks are in evidence.
  • ·        Low slumping temperatures with long soaks reduce the uneven slump that is sometimes in evidence with deeper moulds.
  • ·        Low temperatures allow different colours to heat more evenly.
  • ·        Low temperatures reduce the thinning or thickening of glass in a high temperature slump.

More information is available here.

This information shows you need to keep the slumping temperature to the minimum required. To find out what that temperature is, watch the slumping in stages in brief peeks (do not stare!). Look at the piece for a second or two every five minutes before you reach your desired temperature and at intervals throughout the hold.

If it has slumped completely at the beginning of the hold, you are firing too high. Reduce your temperature in subsequent firings and watch in the same way to find what the required temperature and time is. There is absolutely no substitute in slumping but to watch by peeking to learn what your mould and glass require. 

What Temperature?

To determine the temperature needed for your piece, use slow ramp rates – between 100°C to 150°C/ 180°F to 270°F. Set your top temperature around 630°C/1170°F for a simple slump of fusing glass. For bottle or window glass you will need a temperature closer to 720°C/1330°F.

It is necessary to observe the progress of the slump as you do not know the best slumping temperature. Start watching the glass at about 10-minute intervals from about 600°C/1110°F. There is not much light in the kiln at this temperature, so an external light is useful. You can also observe the reflections of the elements on the glass. When the image of the elements begins to curve, you know the glass is beginning to bend. You then know that is the lowest possible slumping temperature when using that ramp rate.

Hold for at least 30 mins at the temperature when the glass begins to visibly drop. This may or may not be long enough. Continue checking at 5-10 minute intervals to know when the slump is complete. If the glass is completely slumped before the soak time is finished, advance to the next segment. If not fully slumped, you need to extend the soak time. These operations mean you need to know how to alter your schedule while firing. Consult your controller manual to learn how to do these things. Stop the hold when complete and advance to the anneal.

In some cases, you may need to increase temperature you set by 5-10°C. You can do this by scheduling a couple of segments with 10°C/18°F higher temperature each and 30 minute soaks each.  If you do not need them, you can skip them. If you do need the extra temperature, you have it scheduled already.  You will know if you need the extra segments by whether the glass has begun to curve at the start of the first of the soaks.  If it has not after 10 minutes, skip to the next segment. Once the new temperature has been reached, check for a curve in the glass. Again, if after 10 minutes there is no curve, skip to the next (higher temperature) segment.

A low temperature slump will allow the glass to conform to the shape of the mould without softening so much that it takes up all the markings of the mould. That in turn means there are spaces for the air to escape from under the glass all the way to the slumping temperature as well as through the air holes at the bottom. It also gives the most mark-free slump possible for your shape.

If you are slumping at such a temperature that the glass has sealed to the mould, you are firing too hot anyway. Or put more positively, use a low temperature slump, that is, a slump at the lowest temperature to achieve the desired result over an extended period of your choice.


More information is available in the eBook Low Temperature Kilnforming available through Etsy or Bullseye.

Wednesday 27 July 2022

Softening the Tack Profile



Often people want a particular profile not provided by the schedules in the controller or the ones they normally use for tack fusing. The question arises as to whether to increase the temperature or extend the soak on a previously fired piece.

You can do either.

You can extend the time or increase the temperature. There are benefits and drawbacks with each.

Increasing the temperature is the choice for a quicker firing. But you have less control.  By increasing the temperature, you will certainly get a softer edge to the glass. You do not know until the firing is finished how much the glass has changed.

Extending the time means that you know a softer profile will be created simply by more heat work being put into the glass.  If you combine the extended soak time with peeking at intervals, you have much more control over the exact profile achieved.  Observation at 5- or 10-minute intervals after the target temperature is achieved, will enable you to get exactly the profile you want. Just advance to the next segment when that profile is achieved. 

The drawback is that the firing takes a little longer and you have to be present at the time the working temperature is reached.  You can schedule that by using the delay feature on your controller.


Note that on any re-firing of a piece you need to be aware that you are firing a single thicker piece rather than the original multiple layers.  This will require a more cautious rate of advance up to the softening point of the glass – generally around 540°C.  After that, the original rate(s), soaks and annealing can be used.

Of course, the considerations of temperature versus time can be applied to an initial firing as much as to a re-friing of a piece.


Observation is the best way to have precise control over the profile of your tack fusing.

Further information is available in the ebook Low Temperature Kiln Forming.

Wednesday 18 May 2022

Large Uprisings on Slumps



Help!  Looks like my shallow bowl wanted a boob.  [16” diameter pot melt slumped into shallow 20” mould, 4” above floor, fired at 175°F to 1100°F for 20 minutes,  and 75°F to 1250°F for 15 minutes]

What happened?

Sometimes a slump results in an uprising at the bottom of the slump. In this case, and many others, we know the vent at the bottom of the mould was open and the piece was supported above the shelf.  This indicates that everything should be set up for a good result.  Still, this uprising occurred.  It is not a bubble, as the glass is apparently evenly thick throughout the “boob”. 

The usual, and mostly unexpected, cause is too long or too hot a slump.  The firing, if allowed to continue, would result in a larger uprising and eventually a thickening of the piece at the bottom of the mould associated with a related reduction in the dimensions of the final piece.

What has happened is that the glass has become soft enough for it to slip down the sides of the mould. But it has not been hot enough for long enough to allow the glass to thicken.  The glass at the bottom is pushed up to compensate for the slightly hotter glass on the sides of the mould sliding down on the glass at the bottom.

In this case there is a moderate (97°C) rise from a soak of 20 minutes at 593°C to 676°C, soaking for 15 minutes.  This is a lot of heat work at a relatively high temperature for a shallow mould. 

What to do in the future?

Rate of Advance

Consider what you are trying to achieve at each stage of the scheduling of the process.  In this slumping there really is no need to soak at 593°C. It is a nowhere temperature.  The glass is no longer brittle.  It is at the lower end of the temperature range where the glass is softening anyway.  A simple, steady rise in temperature, as at the beginning, of at or below 100°C will be sufficient to bring the whole substance of the glass to the slumping temperature. If the piece is really thick, consider an even slower but steady rate of advance without any soaks.

Soak Temperature

Also, if the slump can be achieved in 15 minutes, it is too hot.  If the slump is complete in such a short time, it will be marked much more than needed by contact with the mould. 

The cooler the glass at the conclusion of the slump,  the less marking there will be.  Yes, the soak time needed to complete the slump will be longer, but the bottom of the glass will be cooler than a hot fast slump.  You should always be trying to achieve the effect you need at the lowest practical temperature.  The slow rate of advance will assist in completing the slump at a lower temperature, as the amount of heat work put into the piece will be greater.

Observe the progress of the firing

Observation is necessary when doing something different.  Some argue that it is necessary in every slump.  I admit that I do not always observe every slump, but this case again illustrates the need to observe each slump. 
By observing at 10- or 15-minute intervals, you will see when the slump is complete.  You may feel you do not have the time to wait for an hour or so for the slump to be complete, or that it does not fit with your activities.  The answer is to arrange the kiln’s schedule so that when the critical part of the process is reached it will fit with a space in your other activities. https://glasstips.blogspot.com/2016/12/diurnal-firing-practices.html

Can this piece be fixed?


You could put the piece on a shelf and take it to a high temperature slump with a significant soak to flatten it.  You will need to observe when the uprising is flat again, and then proceed to anneal.  However, the pattern placed in or on the glass will be distorted to some extent.  The uprising will flatten with a thicker rim around the base of the rise in the glass.  This may be visible. 

My view of these things is to learn as much as you can about causes and prevention and move on.  You advance your practice more quickly by understanding what went wrong and why than by trying (unsatisfactorily) to rectify a failed piece.  Often you can cut the glass up and use the pieces in other projects.

Further information is available in the ebook: Low Temperature Kiln Forming.

Uprisings at the bottom of slumps are often the result of too much heat work (rate, temperature and time).  Slow rates if advance to low temperatures with long soaks backed by observation prevent the occurrence of these bubble-like uprisings.

Friday 13 May 2022

Fixing a Broken Piece

 This conversation is reproduced by permission (with some editing out of extraneous information). It is presented as an example of how conducting a critique of your schedule can have dramatic effects on the results of your firing.

 

This is the piece as it came out of the kiln

Picture credit: Ike Garson

 You may have seen the photo I posted of a large copper blue streaky piece that has cracked right across. …  I’m wondering if it would be better trying to bring the 2 pieces together instead of opening up the 2 pieces and inserting frit. I was thinking of firing it with a tack or contour schedule.


This is the crack that developed later through the frit and single layer centre.

Picture credit: Ike Garson

 

I have 4 questions:

A.   Even if I manage to fix it, do you think that fissure line will always be too weak and liable to break off at any point?

Response: The strength of the joint will be dependent on the firing conditions.  To make it strong, the temperature should go to full fuse.  Tack fusing will leave the joint more visible and weaker.  To stop the joint rounding during heat up, you will need to dam the piece tightly to stop the normal expansion of the glass and ensure the glass is forced together during the higher temperatures.

B.     I have some large pieces of clear confetti. Would it benefit using them to bridge the 2 sections from below?

Response: Anything you put on the bottom will have distinct outlines and visibility.  The temperature on the bottom can be 10C or more different from the top surface, which is why you can get crisp lines with the flip and fire technique.

C.    Would clear powder hide the crack or would it always be visible after firing?

Response: Any additions to the top may be less visible, but adding clear powder makes the join more obvious.  You need to use powder of the same colour as the sheet glass.  Since you are using a streaky glass, you can’t use coloured power either as it is very difficult to imitate the steaks even with powders of the same colours. 

More information was given indicating the first contour fuse schedule in Celsisus:

  1.  260 730 00.20
  2.  FULL 515 00.60
  3.  260 150 End

This is the contour schedule I have used many times successfully but never for a piece during this week. 

My critique of the schedule. 

Segment 1.

·        It is too fast for the small distance to the side of the kiln. 

·        It is too fast for a piece of varying thicknesses. Most expansion breaks occur below 300˚C, so a soak at ca.260˚C will help ensure the glass maintains an even temperature, especially with large differences in thickness. Then you can advance more quickly. 

·        There is no bubble squeeze.

·        The top temperature seems low for a good tack, or the soak is a bit short.  Long soaks allow the glass molecules to bind at the atomic level firmly. This is the principle used in pate de verre.

·        It definitely needs to be on fibre paper covered with thinfire to allow air out.

Segment 2.

·        The soak at 515˚C is better done at 482˚C for Bullseye.

·        My tests have shown that contour firing a piece like this at rates and holds for 1.5 times the height of the piece is necessary for good results.

Segment 3.

·        Also, my tests have shown that a three-stage cooling provides the best result.  Slow cooling keeps the glass within the 5°C difference required for avoiding stress.

·        Annealing at the bottom end of the range combined with an appropriate length of soak and slow cooling gives a denser glass than soaking at the middle of the annealing range. 

·        The best cooling comes from a three-stage cooling process.  This involves a slow rate for the first 55C, a rate of 1.8 times this for the second 55C, and a rate of 3 times this for the final cool to room temperature. 

These points mean that I would recommend you fire for at least 10mm thick.  This recommendation is for a new piece, not a repair. In this repair case and for the conditions, I would choose 12mm as being more cautious. My schedule would look something like:

  1. 120˚C to 260˚C, 20’
  2. 300˚C to top temperature, 10’
  3. Full to 482˚C, 120’
  4. 20˚C to 427˚C,0’
  5. 36˚C to 370˚C, 0’
  6. 120˚C to room temperature, off

The anneal soak is for a piece 12mm thick.  The cool rates are for 21mm thick.  This is to compensate for the nearness of the glass to the edge of the kiln.  It will help to ensure the glass does not have excess stress locked into the piece during the cooling. 

D. Do you think this schedule would work [for a repair]? It's adapted from a standard tack schedule.

  • 1. 222 677 00.30
  • 2. 222 515 00.40
  • 3. FULL 482 01.30
  • 4. 63 371 ENDS

 

Critique of the re-firing schedule.

Segment 1. 

·        Too fast given earlier difficulties. 

·        Too low for good adhesion unless you use about 10 hours soak. 

·        Even at sintering temperature (690°C) you would need 2 hours.  But at sintering temperature you do not alter the surface 

Segment 2. 

·        Too slow a cool from top temperature and risks devitrification. Should be FULL.

·        You do not need the soak at 515˚C.  It only delays the annealing process.  It seems this idea of soaking at the upper portion of the annealing range was introduced by Spectrum over 2 decades ago. 

·        Any advantage that might be achieved by the higher soak is cancelled by the FULL rate to the annealing soak. 

·        Go straight to the anneal soak. 

Segment 3. 

·        You need a more controlled 3 stage cooling to get the best result.

 

My schedule for repair would look something like this:

  1. 120˚C to 540˚C, 10’
  2. 300˚C to 780˚C, 10’
  3. Full to 482˚C, 210’
  4. 20˚C to 427˚C,0’
  5. 36˚C to 370˚C, 0’
  6. 120˚C to room temperature, off

I am making the assumption that 780˚C is full fuse in your kiln.  Anything less than full fuse will certainly show the crack. 

A Look at Causes.

·     The piece is far enough away from the elements.  It is not on the floor. These are not the causes.

·     It is very near the sides of the kiln.  These are always cooler than the centre. There is always a risk of breaking in this case.  Very slow rates are needed. 

·     There is a 3.5 times difference in thickness within the piece. This also requires slow rates.

·     If the break were to have been on the heat up these elements of uneven heating, and rapid rates are a problem.  But the break occurred after the cool down. So, the annealing soak and cool is a problem. 

·     I have suggested some alterations to the schedules to address these things.

 

Fixing for Yourself

·        Dam it tightly to avoid expansion within the glass as it heats.  This holds the join together and causes the glass to gain a little height during the firing. 

·        Place the piece on 1mm or thicker fibre paper topped with thinfire.  This will help avoid a bubble forming in the clear.

·        I have suggested a schedule which is slower to ensure no further breaks.  It is slow to the strain point and fast after that. 

·        It needs to be a full fuse to fully join the two pieces and ensure it is sound.

·        The cool to annealing should be FULL.  Eliminate the soak in the upper annealing range. The effects of the time spent there is nullified by the rapid rate to the main annealing soak. 

·        Anneal as for 12mm, but with slower cool rates (for 21mm) to ensure there are no stresses built into the piece by the nearness of the glass to the edge of the kiln.

·        These methods and schedules will make it a strong whole.  But the join will still show on the bottom. 

·        After fixing, if you are still not satisfied, break it up for incorporation in other projects.

Finally, and unfortunately, I do not think it can be satisfactorily repaired for a client.  The crack will show on the back. You will know it is a repair, rather than a whole. And that will reflect on your feeling about the piece, and possibly your reputation. 

Conclusion

The commission was successfully re-made from scratch by the artist using some of my suggestions on scheduling. This is the resulting piece.

 

Picture credit: Ike Garson

 

Careful analysis of the conditions around a break are important to making a successful piece in the future. Many factors were considered, but the focus became the schedule. Analysis of each step of the schedule led to changes that resulted in a successful piece with the original vision and new materials.