Showing posts with label Gravity. Show all posts
Showing posts with label Gravity. Show all posts

Sunday 1 October 2023

Kilnforming with 3mm Glass

 A power point presentation I made a few months ago to the group Lunch with a Glass Artist.

It is 33 slides long.

Kilnforming with 3mm Glass.pptx

Wednesday 15 September 2021

Digest of Principles for kiln forming

Some time ago people on a Facebook group were asked to give their top tips for kiln forming.  Looking through them showed a lot of detailed suggestions, but nothing which indicated that understanding the principles of fusing would be of high importance.  This digest is an attempt to remind people of the principles of kiln forming.

Understanding the principles and concepts of kilnforming assists with thinking about how to achieve your vision of the piece.  It helps with thinking about why failures have occurred.

Physical properties affecting kiln work

Heat
Heat is not just temperature. It includes time and speed.

 Time
       The time it takes to get to working temperatures is important.  The length of soaks is significant in producing the desired results.

 Gravity
       Gravity affects all kiln work.  The glass will move toward the lowest points, requiring level surfaces, and works to form glass to moulds.

 Viscosity
       Viscosity works toward an equilibrium thickness of glass. It varies according to temperature.

 Expansion
       As with all materials, glass changes dimensions with the input of heat.  Different compositions of glass expand at different rates from one another, and with increases in temperature.

       Glass is constantly tending toward crystallisation. Kiln working attempts to maintain the amorphous nature of the molecules.

 Glass Properties
·        Glass is mechanically strong,
·        it is hard, but partially elastic,
·        resistant to chemicals and corrosion,
·        it is resistant to thermal shock except within defined limits,
·        it absorbs and retains heat,
·        has well recognised optical properties, and
·        it is an electrical insulator. 

These properties can be used to our favour when kiln working, although they are often seen as limitations.

Concepts of Kiln Forming
Heat work
       Heat woris a combination of temperature and the time taken to reach the temperature.

 Volume control
       The viscosity of glass at fusing temperatures tends to equalise the glass thickness at 6-7mm. 

 Compatibility
       Balancing the major forces of expansion and viscosity creates glass which will combine with colours in its range without significant stress in the cooled piece.

 Annealing
       Annealing is the process of relieving the stresses within the glass to maintain an amorphous solid which has the characteristics we associate with glass.

 Degree of forming
       The degree of forming is determined by viscosity, heat work and gravity.  These determine the common levels of sintering, tack, contour, and full fusing, as well as casting and melting.

 Separators
       Once glass reaches its softening point, it sticks to almost everything.  Separators between glass and supporting surfaces are required.

 Supporting materials
       These are of a wide variety and often called kiln furniture.  They include posts, dams, moulds, and other materials to shape the glass during kilnforming.

 Inclusions
       Inclusions are non-glass materials that can be encased within the glass without causing excessive stress.  They can be organic, metallic or mineral. They are most often successful when thin, soft or flexible.

A full description of these principles can be found in the publication Principles for Kilnforming


Tuesday 31 December 2019

Gravity


One of the fundamental elements in kiln forming is gravity. When glass is hot it moves according to the effects of gravity and you have to remember that gravity has a big effect on all your firings.

The effects mainly cause:
  • Uneven thickness on shelves that are not level.
  • Uneven slumps into moulds which are not level or the glass is not levelled.
  • Uneven forming due to varying viscosities. Gravity acts on the softest parts of the glass first.
  • Faster or slower forming due to span width. With greater span, gravity pulls the glass into the mould more quickly than with a small span.
  • Gravity acts on things of greater thickness more quickly than those of lighter weight. So a thick piece will form more quickly than the same sized thin piece.
  • Surface tension (affected by viscosity and heat) is affected by gravity also. The glass will attempt to draw up or spread out to about 7 mm if there is enough heat, time, and low viscosity.
  • The effect of gravity causes upper pieces to thin lower ones, as it presses down while the glass is plastic. This has the effect of making the colour of the lower piece less strong.

More information on each of these effects can be found throughout this blog.

Wednesday 18 November 2015

The 6mm Rule - Kiln Forming Myths 11

Glass always wants to be 6mm thick


This is true only at some temperatures.  

The surface tension or viscosity of the glass, together with gravity determines the extent to which the glass will thicken or thin.  The viscosity of glass is such that at high temperature tack and full fusing heats, the glass does tend to become 6mm - 7mm thick. This is taken advantage of in kiln forming to obtain rounded edges, and in making frit balls.  A single layer of frit up to about 10mm will become a round dome due the action of the viscosity and weakness of gravitational forces acting on a small mass. 

Larger pieces of single layer glass begin to shrink as the viscosity is great enough to overcome gravitational forces to allow thickening at the edges.  This causes dog-boning.   At the same time the glass is thickening at the edges, it is thinning in the interior allowing large bubble formation on thin pieces. It also is the cause of the needle points on thinner pieces at higher temperatures.  The glass is soft enough to conform to any imperfections in the surface and so be stretched thin as the main mass of the glass contracts. 

This contraction also applies to low mass items such as frit in casting moulds.  The glass particles contract to form a single mass of material, leaving some stuck to the mould. These pieces may be completely separate as tiny frit balls, or if attached to the main mass, a series of needle points on the edge of the finished piece.

However, the viscosity at full fuse temperatures is not great enough to keep thicker glass in its original shape.  So the effect of gravity on glass of 9mm or thicker overcomes the weakening viscosity force and the stack begins to expand. The extent of the expansion is the result of both viscosity (heat dependent) and gravity (mass dependent).

At lower temperatures, the viscosity is much greater.  This can be used for low temperature tack or laminating temperatures. The glass can be adhered with heat without distortion of the single layer, as the viscosity is so high the glass does not change shape, even retaining sharp edges, although stuck together.

At temperatures above full fuse the viscosity decreases further allowing the glass to flow.  This is used in casting, blowing, and various higher temperature processes, such as aperture melts and stringer formation.  Here the viscosity is low enough to allow gravity to make thin and elongated shapes.

There is a range of temperature above which glass will thin more than the 6mm – 7mm “rule”.  I do not know the exact correlation between temperature and thickness, but at around 1150°C  the glass will become only a little under one mm thick.  This can be seen from the results of kiln runaways. The glass that is melted onto the surface of the shelf is extremely thin, showing that the viscosity was so low that gravity was able to thin it to a fraction of what we think of as normal thicknesses.

The 6mm myth arises from the behaviour of glass at a specific heat range and is the result of the combined forces of viscosity and gravity.  Knowledge of how these interact can enable you to understand the outcome of various projects.  This knowledge of the forces can be used to help create the effect you want.  It also enables you to employ various means to counteract the natural forces of gravity and viscosity. 

More information is in the e-book: Low Temperature Kilnforming.