Showing posts with label Brass came. Show all posts
Showing posts with label Brass came. Show all posts

Wednesday 13 May 2020

Strong Frames for Stained Glass Panels


Metals
Zinc is a popular material for framing copper foiled or leaded glass panels.  It is stronger than lead – up to eight times.  It gives a feeling solidity to the edges of the panel. 

However, it does have some disadvantages.  It is difficult to patina evenly and obtain the same colour as patinaed solder.  It resistance to progressive corrosion is weaker than lead. It requires special tools to fit around curves, making it best for rectangular panels.  It does need a saw to cut evenly, but so do a lot of the stronger metals.  A look at other options is worthwhile.

The strongest option is stainless steel.  This is difficult to cut and has special welding requirements, so is only useful in large and high corrosion installations.

Mild steel is widely available and cheap.  In certain circumstances – mainly small, thin profiles – it can be soldered.  The most secure joining is done with welding.  This requires equipment that stained-glass workers do not usually have.  However, there are a large number of metal workers that can to the work for you.

Brass is more expensive than mild steel.  It is an alloy of copper and tin and so can be soldered with the tools we normally use.  It is about half the strength of stainless steel, but three times the strength of zinc.  The tin content leads to a better patina result than zinc.

Copper is up to twice the strength of zinc, but the price fluctuates more than zinc.  It can be soldered. It requires different patina solutions than used for solder.

Aluminium is the same strength as zinc, but requires different joining methods as aluminium welding is a specialist activity.  Still, it will work on rectangular items with screws at overlapping joints.

More information on the relative strengths of various metals is given in a post on metal strengths.


Strengthening lead came
Lead is weaker than lead but can be bent to conform to curves and indentations for irregular perimeters.  If copper wire is incorporated and attached to the foiled glass, the soldering of the lead came to the joints at the intersections of the solder lines and the coper/came combination will provide greater strength than the zinc alone. 

When wanting to strengthen the perimeter of rectangular or shaped perimeter leaded panels, you can use 10mm “H” lead came soldered as usual to the whole piece as an alternative to soldering the wire to the panel.  Run the copper wire in the open edge of the “H”.  Pull the wire tight at the bottom and sweat solder at each corner.  Run the wire to the top on each side, where you can make a loop for attaching hanging wires and sweat solder the wires there too.  Then close the two leaves of the lead with a fid until they come together forming a single straight line.  If you want, a “U” or “C” edging came can be soldred to the outer edge of the "H" came to cover the line created by folding the leaves.

This post gives more detail about the process of incorporating copper into the perimeter of a leaded panel.



Wednesday 19 February 2014

Panel Framing Options


Some framing options for free hanging stained glass panels are given here.  They are not exhaustive, of course, but do give some principles to be considered when making frames.  Wood and metal are the two traditional materials for framing panels to be hung.

Wood
A wood frame requires joints of some kind. These joints are important to the durability of the frame. The two main kinds of joints are glued and screwed.

Glued joints


Lap joints seem to be strongest. An odd element relating to the strength of this joint is that placing a wooden pin in the joint weakens, rather strengthens the lap joint.

Mortice and tenon is also a strong joint. It requires considerable skill to make a good joint.



A mitred is among the weakest, but can be strengthened with a biscuit or fillet in the joint.

A mitred joint with biscuit ready for glueing.


Screwed joints
These have a lot of movement before failure, but do give a lot of resilience to the joint as they can stretch rather than immediately give way. They also can be used with any of the glued joints if appearance is not of prime importance.

Frame style
The width and thickness of the frame are interrelated – thicker frames (front to back) can be narrower, thinner frames need to be wider. So the desired appearance of the frame width has a significant effect on the dimensions of the frame.

Metal cames or angle

Lead can be an adequate framing material, but if strengthening is required, you can use copper wire within the came and fold the leaves closed over it. You can also use steel rod within the came, as shown in the posting.

Zinc is a stronger metal than lead – about 8 times, but still has a weak tensile strength. I corrodes easily, but accepts solder as a joining method. It is more expensive than lead.

Some of the variety of zinc came available

Aluminium is a little stronger than zinc, but does not take solder. It has similar costs to zinc.

Some of the aluminium profiles available

Copper is about 1/3 stronger than zinc and also takes solder. It corrodes to a verdigris, but can be protected by clear varnish or paint. It is more expensive than zinc, but can be used as wire which is less expensive than other forms of copper.

Brass is over two times stronger than zinc and also takes solder. It resists corrosion well, and is a little cheaper than copper.

Some of the brass came options.


Mild steel is over 3 times stronger than zinc, but does not take solder at all well. It is relatively cheap and welds easily, making it a good framing material, although a method of fixing the panel into the frame is required.

Stainless steel is about 4.5 times stronger than zinc, but does not take solder and needs special welding. It resists corrosion very well, but is expensive in relation to zinc.


Hanging and fixing options
Two point hangings are the most common as they prevent twisting and distribute the weight to the sides of the panel.

The hanging material is straight up from the zinc framed sides to the fixing points

The hanging material whether line, wires or chains should be straight up from the sides to two separate fixing points. A triangle shaped hanging puts a bowing stress on the panel or frame.

A variation where the chain is taken to the corner of the window, is less secure, as it stresses the joint away from the sides

Loops or holes for screws should be placed in the frame rather than the panel.

The hanging is from reinforced corners directly to fixing points on the overhead beam

Ensure the fixing points for the hanging wires are sound and secure.

If the panel is fitted tight to the opening, consider ventilation requirements to reduce condensation between the primary glazing and the hung panel.